Error estimates for two types of Lagrange-Galerkin scheme for the Peterlin viscoelastic model

M. Lukáčová, H. Mizera, H. Notsu, M. Tabata

Mathematical model

The Peterlin viscoelastic model [P]

\[\frac{\partial u}{\partial t} + (u \cdot \nabla) u = -\nabla p + \beta(\nabla u + (\nabla u)^T) - \beta \nabla \phi, \quad \nabla : u = 0 \]

\[\frac{\partial \phi}{\partial t} + (u \cdot \nabla) \phi = \chi(\nabla \cdot (\nabla \phi)) - \phi (\nabla \cdot (\nabla \phi)) + \epsilon \Delta \phi \]

on \(\Omega \times (0, T) \)

\[(u(0, \cdot), \phi(0, \cdot)) = (u_0, \phi_0) \] in \(\Omega \).

\(\Omega \subset \mathbb{R}^{d} \) bounded smooth domain, \(\mu \) fluid viscosity, \(\epsilon \) elastic stress diffusivity

Existence of global weak solutions

Let \(d = 2, 3 \) and let \((u_0, \phi_0) \in L^2(\Omega) \times L^2(\Omega) \).

There exists a weak solution to \([P]\) such that

\[u \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1_0(\Omega)), \quad \phi \in L^2((0, T) \times \Omega) \cap L^{1+\delta}(0, T; W^{1,1+\delta}(\Omega)), \]

\(d = 2 \) \([4] \)

\(d = 3 \) \([4] \)

\(d = 3 \) \(\mathbb{R}^d \) pressure, \(C \in \mathbb{R}^{d \times d} \) constant tensor

The present work has been supported by the DFG IRG 1529 "Mathematical Fluid Dynamics" and partially by the DFG IR TG within TRR 146 "Multiscale Simulation Methods for Soft Matter Systems". It has been realized in collaboration with Erk a and Michael Rennardy.

Numerical approximation of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange-Galerkin method

- \(\psi(s) = \phi(s) \) and \(\phi(s) = s \)
- Conforming finite element approximation of \(u, p \) and \(\phi \) by continuous piecewise linear functions + pressure stabilization
- Material derivative discretized by the method of characteristics

Numerical experiments

Experimental order of convergence

Convergence domain: \((x, y, t) \in (0,1)^2 \times (0,0.5) \)

The Oseen-type Peterlin viscoelastic model

The convective terms in \([P]\) are linearized by a given velocity \(w : \Omega \times (0, T) \to \mathbb{R}^d \).

References

Acknowledgement

The present work has been supported by the DFG IRG 1529 "Mathematical Fluid Dynamics" and partially by the DFG IR TG within TRR 146 "Multiscale Simulation Methods for Soft Matter Systems". It has been realized in collaboration with Erk a and Michael Rennardy.

\[\psi(s) = \phi(s) = s \]

Then, for more regular data, there exists a unique global weak solution to \([P]\) with,\(\psi(s) = \phi(s) = s^2 \).

\[\psi(s) = \phi(s) = s \]