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1. Notation, auxiliary lemmas.

() ... adomain inR?

e C55,(2) ... the linear space of infinitely differentiable divergence—free
vector functions irf2, with a compact support if1,

o L(Q) (for 1 < ¢ < o0) ... the closure ofCF%,(2) in LY(Q),
o W, 2(Q2) ... the closure ofC, () in WH3(Q),

o W, %) ... the dual space t& (<),

e W, () ... the dual space t8 ().

e The duality between elements W *(2) andW7(Q2) is denoted by

(., .)s, while the duality between elements W '*(Q) and W*(Q)
is denoted by ., .).



Obviously, Wy () ¢ W?(Q) (with the same norms). Hence, fife
W, %(Q) thenf is also a bounded linear functional Ry, (<2) in the
sense that the duality betwegmndy € W77 (Q2) is (f, ¢). Thus, in this
senséW, () ¢ W, *(2) (algebraically).

However, in order to avoid confusion, it is further advantageous to distir
guish between 1fj as an element oVVO_LQ(Q) (which acts on elements of
W,?(Q2) through the duality ., .)) and 2)f as an element oW, *()
(which acts on elements 6V,7(2) through the duality ., .),). There-
fore we prefer to writéP,f instead off in 2).

More precisely, we defin®, as a linear mapping 6V, '*(Q2) to W . *(Q2)
by the equation

(P, )s == (£,p)  forallf € W;*(Q) andyp € W(Q).



Lemma 1. P, is bounded,R(P,) = Wy, (), P, is not1-1.

Proof. P, is bounded:Letf € W;'*(Q). Then

Pt £
1Pl iz = sup [(Pof, )l _ s (£, )|
07 w2 o Pl pew! 2. o0 1Pl
f, ¢
< sap APl

¢€Wé’2; ©#0 ||(PHw(1)72

P.isonto: givenw € W, *(Q2), there exists (by the Hahn-Banach

theorem) an extension., € W, '*(Q) such that (weg, @) = (W, @),
for all p € Wy (2). Hencew = Py (Wex).

P,isnotl-1: taking f = Vg for g € L*(Q), we getP,f = 0.




Remark 1. If v € L%(Q) andp € W72(Q2) then
(Pov, )y = (V,p) = /Qv-sodx

= /v-chpdx = /ng-cpdx = (P,v,p),.
0 0

Hence P,v = P,v, whereP, is the Helmholtz projection if.?(€2).

Particularly, ifv € L2(2), we haveP,v = v.

In order to obtain more information on the spaéégi’Q(Q), its relation to
W, %(Q), and on mappingP,,

o we denoteW - (Q)4 == {f € Wy *(Q); Voo € Wi2(Q) : =0}
(the space of annihilators 3% (12)),



o for f € W *(Q), we denote by, an extension of to a bounded
linear functional onWé’2(Q) — the extension exists due to the Hahn-
Banach theorem and satisfies

(ot ) = (f,0), forallp € WyZ(Q),

e we define mappingr : W, 1*(Q) — W, *(Q) [ wi2(q: (the quotient
’ 0,0
space) by the equation

o(f) = fur + Wyi ()"

In fact, the definition of mapping is independent of the choice of a con-
crete extension df € W2(Q) tof., € Wy %(Q): letfl,, andf’, be two
such extensions. They coincide Wi, ($2), hencef’,, — £/, € Wy (Q)*.
Denote bys’ the mapping defined by means of the extendfgnand by
o the mapping defined by the extensifffy. Then, forf € W *(2), we



have

O_/f o O_//f — (f/ L f//

ext ext) + W(l)ﬁ(Q)J_ - Wé:i(Q)J‘,
which is the zero element of the quotient spaRg ()| 12, .-
0,0

Applying [24, Theorem 4.9], we obtain

Lemma 2. ¢ is an isometric isomorphism aiV, *(Q) onto

VVO_L2 (Q) ‘ Wé»Z(Q)L .

If we denote by the so calledjuotient mappingf Wo‘l’Z(Q) onto
W, "%(Q) |w-12(q 1+ Which is the mapping defined by the equation
0,0

g(g) = g+ Wy, ()" forge W, *(Q),



then we naturally have W™ *(Q)| -2 =
0,0

Moreover, we also have W, "*(Q) w2 = (W, 12(Q)).
0,0 ’

a(Wy ().

Hences~'g mapsW; *(Q2) ontoW *(52). Concretely, ifg € W *(Q)
theno~lq(g) is an elemenf € W, *(Q) such thatr(f) = ¢(g), which
means that

o + Wi 2(Q)F = g+ Wi ()"
Hencef.., — g € W, (). Consequently,
(& ) = (fa,p) = (£, )0,

forall ¢ € Wéf,(Q). This yieldsf = P,g. Sincef = o¢(g), we obtain:

Lemma3. P, =0 lq



The next lemma provides more information on eIement&\tﬁfi(Q)L in
the case of domaif? that satisfies the cone condition.

Lemma 4. Let (2 be bounded or exterior domain iR" (n > 2), that
satisfies the cone condition. L& ¢ W, '*(Q) be a bounded linear
functional onW;?($2), that vanishes oW, 7(Q2) (i.e. F € Wy (Q)4).
Then there exists a functigne L?(€2) such that

F(v) :/pdivv dx
Q

for all v € W,*(Q). Functionp is determined by functiongf uniquely
(up to an additive constant in the case{bbounded).

The lemma follows from [10, Corollary 111.5.1]. The right hand side can
also be written in the formiVp, v), whereVyp is the gradient op in the

sense of distributions.



The next lemma holds for any domdin It tells us what form has a distri-
bution that vanishes on divergence—free functions.

Lemma 5. Let() be any domain iR" (n > 2) andf = (f1,..., fa),
where f; (+ = 1,...,n) are distributions in{2. Thenf has the form
f = Vp (wherep is a distribution inQ2 and Vp is the distributional

gradient) if and only if
f,p) =0 forall ¢ € C§,(9).

The lemma coincides with Proposition 1.1.1 in [36]. It comes from G. De
Rham.



The next lemma plays an important role in studies of non—steady problen
It coincides with Lemma 111.1.1 in [36].

Lemma 6. Let X be a Banach space with the du&l and letu, g €
L(a,b; X). Then the following three conditions are equivalent:

e uisa.e.in(a, b) equal to a primitive function af,
b b
o / D(t)u(t) dt = —/ J(t) g(t) dt forall ¥ € C3°((a,b)),

(n,u) = (n,g) inthe sense of distributions i, b) for each

d
"
n e X'

(Here,( ., .) denotes the duality betweefi and X .)



2. A pressure associated with a weak solution to the
Navier—Stokes equations.

(... adomaininR3, T >0,
QT = () X (0,T>,
FT = 0() X (O,T)

The Navier—Stokes initial-boundary value problem inQ);:

ou+u-Vu+Vp = vAu+f in Qr,
diva = 0 in Qr,

u=20 in ',

uli—g = uy in Q.

(2.1)
(2.2)
(2.3)
(2.4)



The weak formulation of the IBVP problem (2.1)—(2.4):
Givenu, € L2(Q) andf € L*(0, T; W, %(Q)).

We look foru € L>(0,T; L()) N L*(0,T; Wy(%)) (the so called
weak solutiophsuch that

T
//[—u‘at¢+VVu:V¢+u-Vu-¢] dx dit
0 JQ
T
— /uo.qb(x,()) dx+/ (f, @), dt (2.5)
Q 0

for all ¢ € C([0, T]; Wy2(2)) such thai(.,T) = 0.



1st equivalent formulation (see e.g. [36]):
Givenu, € L2(Q) andf € L2(0,T; W, *(Q)). We look foru €
L=(0,T; L2(Q))NL*(0,T; Wy2(%2)) such thai satisfies the initial con-
dition (2.4) and
d
dt
for all o € W2(Q2) and a.e. irf0, T'), where the operatotd : W2 (Q2) —
W, 2(Q) andB : Wi2(Q) x Wi (Q) — W, %) are defined by the
equations

(0, ) + v (Au, ), + (Blu,u), p)s = (f,¢), (2.6)

(Av, <,0>U = /QVV Ve dx forv,p € Wéi(Q),

(B(v,w),p) = /QV -Vw-pdx forv,w,p € Wéi(Q)



It is easy to verify that ifu is a weak solution then
Au € L*0,T; W, (),
B(u,u) € LY30,T; Wy *(Q)).

Applying Lemma 6 (withX = W *(2)), we deduce that (2.6) is equi-
valent to

u +vAu+ B(u,u) = f, (2.7)
which is an equation W, *(2), satisfied for a.at € (0,T). Here,u’
denotes the derivative with respectttof u, as a function fron{0,7') to
W, .%(Q2). Thus, we obtain:

2nd equivalent formulation: Givenu, € L2(Q2) andf € L*(0,T;
W, %(2)). We look foru € L= (0, T; L2(2)) N L2(0,T; W7;(2)) such
thatu satisfies the initial condition (2.4) and the equation (2.7) is satisfie
fora.a.t € (0,7).



Since
(Av, ) = (—Av,¢) for v, p € Wy2(Q),
(B(v,w), cp>a = (v-Vw,p) forv,w,¢p € Wéz(Q)

we have: Av = P,(—Av) and B(v,w) = P,(v - Vw). Thus, equation
(2.7) can also be written in the form

u — vP,(Au) + P,(u-Vu) = f. (2.8)

Since all the term®,(Au), P,(u- Vu) andf are inL*3(0, T; W, -*(2)),
u'is in LY3(0, T; W %(2)), too.

Associated pressure.Letu be a weak solution to the problem (2.1)—(2.4).
If there exists a distributiop in Q7 such that the Navier—Stokes equation
(2.1) is satisfied inQr in the sense of distributions thenis called an
associated pressute the weak solutiom.



Remark 2. u’ cannot be identified with the distributional derivativewpf
as a function fromi0, 7) to W, "*(Q).

In order to show it, denote the distributional derivativeupfas a function
from (a,b) to W, *(Q), by u and assume that € L'(a,b; W, "*(Q)).
Then we have

for p € W5(9).
Particularly, if € W2(Q) then (i1, ) = (P11, ),
For thesep, we also have

d d ,

E(IL 90) - d_t<u7 90>0 — <u?90>a-

From this, we obtain:u’ = P,u.



Existence of an associated pressurelet u be a weak solution. Assume
thatf = P,f, wheref € L2(0,7: W, "*(Q)). Then equation (2.8) takes

the form -
u — vP,(Au) + Py(u-Vu) = P,f.

Integrating with respect to time fromto ¢, we get
t t
u(.,t)—u(.,0) +/ P,|—vAu+u-Vu] dr = / P,f dr.
0 0

Sinceu(.,t) andu(.,0) are inL2(1?), they coincide withP,u(.,t) and
P,u(.,0), respectively. Hence

t t
Pg[u(.,t)—u(.,0)+/[—VAu%—u-Vu} dT} —Pg/de.
0 0
Define forp € C(Q)

Flp) = <u(.,t)—u(.,0)+/0t[—VAu+u-Vu] dT—/Ot?dT, go>



F is a distribution in(2, that vanishes fopp € Cg,(€2). Hence, due to
Lemma 5, there exists a distributidt{t) in 2 such that

u(.,t)—u(.,0)+/0t[—yAu+u-Vu] dT—/Otde = —VP(t).

The left hand side is, in dependencetom L>([0,T); W, *(Q)). Hence
the right hand side is also ib>([0, 7'); W, "*(Q)).

Let p € CF(Qr). Applying the sides of the equation &pp( ., ¢), we get

/[ u(.,0)] - (1) dx
//”V“ ): Vo) +ul,7) - Vul.,7) - 9(.,1)] dxdr
— /0< (1), 0rp( ., >d7_<vp(t),(9t¢(,,t)>.

Integrating this equation with respectitfrom 0 to 7" and applying the



integration by parts, we obtain

// ) - Brep(. )dxdt—/OTA[VVu:v¢+u-vu.¢}dxdT

— _/T<?,¢(.,t)> dT—/OT<VP,6t¢> dt

If we denote by(( ., >>Q the duality between a distribution @, and a
function fromCOO( r) then the last term can be written:

—(VP. o)), = (Vo)
(We identify VP € L®(0,T; W, " 2(Q)) with a distribution inQr.) The
whole equation can be written in the form
<<8tu —vAu+u-Vu— f, ¢>>QT = —<<V6tP, ¢>>QT

From this, we observe thatandp = 9, P satisfy the Navier—Stokes equa-
tion (with the right hand sidé) in the sense of distributions @.



Remark 3. The weak solutiorm can be redefined on a set of measure zer
so that it satisfies

//uVu Vi +u-Vu- ¢ dxd7—/0t<f,¢) dr

/Q( >¢dX+/Qu0'¢dX (2.9)

forallt € (0,T) andy € W2(Q). (See [11, Lemma 2.2].) From this,
one can deduce thatis weakly continuous front, T') to L2(12).

One can also prove a reverse statement, i.e. that funatien L*>° (O,T;
L2(Q)) N L*(0, T; W2(9)), satisfying (2.9) for alky € W77(<2) and for
allt € (0,7), is a weak solution. (See [11, Lemma 2.4].)

The next Theorem 1 (which is taken from the paper [11]) by G. P. Gald
brings a more detailed information on distributién Further information
is also provided by the papers [28] (by J. Simon) and [37] (by J. Wolf).



More on the associated pressure:

Theorem 1. Letf € L*(0,T; W, *(Q2)) and letu be a weak solutior
to the problem (2.1)—(2.4). Then there exists a scalar function (),
unigue up to an additive function 6fsuch that

o P(.,t)e L7 () forallte0,T),

o if () C Q satisfies the cone condition théhe L>°(0,T; L*(Q)),

¢ (2.10) holds withP( ., ¢) instead of( [, p dr) for all x € Wy*(Q)
andallt € [0,7):

t t
//[VVUIVX—FH'VU.-X]dXdT—/<f,X>dT
0 Jo 0

= /P(.,t)divxdx—/u(.,t)-xdx+/u0-xdx.
Q Q Q
(2.10)




Remark 4. If 0f2 is bounded and satisfies the cone condition tRezan
be chosen so thdt € L>(0,T; L*(Q)).

Remark 5. Assuming thatf e LQ(O T; W, '*(Q)), we can obtain for-

mally (2.10) (withP(. fo 7) dr) from the Navier—Stokes equa-
tion (2.1) if we multlply it by a functlonx C W ?(2) and integrate in
Q) x (0,1).

On the other hand, i and P satisfy (2.10) then, considering the distri-
butional derivative of (2.10) with respect tpone can deduce that 0, P
satisfy equation (2.1) in the sense of distributiong)in (The arguments
are analogous to those used in order to show that funetjosatisfying
(2.9) for allyp € W5(2) and allt € (0,T), is a weak solution — see [11,
Lemma 2.4].)



Example.

Here, we give an example of a simple weak solution to the system (2.:
(2.2), that is not smooth in dependence on time and(x,t) does not
exist as a function. The solution, however, does not satisfy the bounde
condition (2.3).

Let a € C([0,7)) be such a function that ¢ L! ([0,7)). Letv €

loc

W,2(Q2) have the formv = Vi, whereg is a harmonic function irf.

u(x,t) = a(t)v(x).

Thenu is a weak solution to the system (2.1), (2.2) with the initial velocity
uy = a(0)vandf =0inQ x (0,7).

(It means thai satisfies (2.5) withuyy = a(0) v andf = 0 for all ¢ €
C>([0,T); Wy2(€)) such thaw(.,T) = 0.)



Equation (2.6) takes the form

/ / vaAp + 5a La? 2] div x dxdr
/P( t)divx dx + |a(t) — a(0)] /gpdivx dx.
0 Q
It means that
P(.,t) = /0 [vadp +1a°p’] dr — [a(t) — a(0)] ¢ In Q.

Asa ¢ L, ([0,T)), 0,P (which is a pressure associated with the weal
solutionu) exists only as a distribution.



Principle of the proof of Theorem 1. (See the proof of Theorem 2.1
in [11].) Qs expressed:Q) = ;- %, whereQ, C Q4 (for k =
1,2,...), all €2, are bounded and satisfy the cone condition. Define fo
X € Wy ()

F(x) = /Ot(/gk[VVUZVXJrU-Vu-X] dX—<f7X>) 4r

+/ u(.,t)-xdx—/ ug - x dx.
o o

F is a linear functional oW, (€2, ). It satisfies the estimate

t
700 < elixlhao, [ [ (19uliio, + VAT [9ul, + £]-12) dr + 2M],
0

where M :=esssup ||u(.,7)|[2. This shows that functiona# is bounded.
0<r<T

Moreover,
F(x) =0 forx e Wyi(Q) (dueto (2.9)).



Hence, considering = 1, there existsd?, € L*(€);) such that

¥ x; € WiP(Q) Flx,) = /Q P divy, dx.
|
Similarly, considering: = 2, there existd® € L*((),) such that
Ve € WE) s Fl) = [ Pudivxdx
2
Extendingy, by zero tof), ~. Q;, we havey, € W,(€). Hence
¥ x, € W) : /Q P divy, dx = /Q P, divy, dx.
| |

ConsequentlyP(x,t) = Pi(x,t) + ¢(t) for x € . Thus, modifying
appropriatelyP, by an additive function of, we getPs(x,t) = Pi(x,1)
for x € Q.



Proceeding in the same way, we obtain functiq.,¢) in  such that
P(.,t) e L*(Q) forall k € N and

Yy € WO © Flx) — / Pdivy, dx.
Qp

/ Pg dx
Q

where the supremum is taken over@l L*(€2;,) such that|gl|2.o, = 1.

Since each such functigncan be expressed in the fogm= div x,, where
X € Wi (%) and||xslli20, < ek |lgll2.0, = &, We deduce that

IPllz0, < el Fll-12:0,

The norm ofP is

1Pll2;0, = sup
g

t
< Ck/O (IVullos0, + M2 [Vuld/e, +|I€]|-12) dr +201.



On some other results.

e If Q) is any domain inR? andf = f, + DivF, wherefy € L! ([0,7T);

loc

L2(Q), F € L/3([0,T); L%(Q)**3) then P can be chosen so that €

loc

LY3([0,T); L2 (). (See H. Sohr [31, Theorem V.1.7.1] (2001).)

loc loc

e If 2 I1s bounded then there exists at least one weak solutiomh an
associated pressuge e W-1>(0,T; L7 (). If Q is locally Lips-

chitzian therp € W=1(0, T; L*(92)). (See J. Simon [28] (1999).)

e If 2 is a smooth bounded or exterior domain®Bi andu is a weak
solution then, under some assumptions on the smoothnegsanidf,
the associated pressuyrés in L°/3(Qr). (See H. Sohr and W. von Wahl|
[30] (1986).)



e If 2 is a smooth bounded or exterior domain or a half-space or ti
wholeR? andf = 0 then the associated presspiig in L®(e, T; L’(Y))
forl <a<2,2<p8<3,2/a+3/8=3.(See Taniuchi [35] (1997).)

e If Q2 is a smooth domain then a series of authors have shown that t
problem (2.1)—(2.4) has the so calledtable weak solutiorwhich is a
pair of functionsu, p such that is a weak solution (in the sense of the
previous definition)p is an associated pressure, and satisfy the so
called “generalized energy inequality” (which is also called the “local
ized energy inequality” or “local energy inequality”). Particularly,

— L. Caffarelli, R. Kohn, L. Nirenberg [5] (1982) obtaingds L°/4(Q7),
provided thaf € L?(Qr) N LY (Qr) for someg > 2 anddiv f = 0,

loc

— F. Lin [17] (1998) obtaineg € L°/3(2), with f = 0.



e If Qis any domain iiR? then J. Wolf[37] (2007), considerirfg= 0 and
T = oo, proved the existence of a “generalized suitable weak solutior
u, p such thatp = py + 0,p, Where py, € L*Y3(0,00; L*()) and
pn € C(Qw), App = 0.

More on the paper [28] (1999) by J. Simon.
Assume thaf € L2(0,T; W, "*(Q)).
If uis a weak solution then
du e WH(0, T, L (),
u-Vue LY0,T: L*3(Q))
Au € L¥0,T; W, *(Q)).
This yields du + u - Vu — vAu — f € W10, 7; W *(Q)).



Assume thaf) is locally Lipschitzian and denote
t
G(t) = / [&tu +u-Vu—rvAu - f} dr
0
t
= u(t)—u0+/ [u-Vu—VAu—f] dr.
0

Obviously, G € L>(0,T; W, *(Q2)) and G(t) vanishes oW~ ().
Hence, due to Lemma 4, there exigtse L>(0,T; L*(Q)) such that

(G(1), ) = /QP(.,t)divcp ix — —(VP(..1),)

t
for all ¢ € W, %(Q). Thus, / [Ou+u-Vu—vAu—f] dr = -VP.
0

If €2 is not locally Lipschitzian then a similar consideration can be applie
only locally insidef.



More on the paper [30] (1986) by H. Sohr and W. von Wahl.
Theorem 3.3 in [30] concerns the cdse- R”. If n = 3 then it says:

Theorem 2.Let() be a smooth bounded domainii, 7" > 0, andu be
a weak solution to the Navier—Stokes problem (2.1)—(2.4).

elet 2 <r <3 1<s<2 1<gq<3 with3<2/s+3/r,
1/q:=1/r +1,
1,
elet f € L°(0,7; LY2)) and uy € D(A}, YN L2(Q) for some
e > 0.
Then we have
e Oiu, Au, u-Vu e L(0,T; L4(Q)),

e there exists an associated presspre L*(0, T; W14(Q)).




]
3’

o, Au, u- Vu € L3(0, T; L™(Q)), p € L*3(0,T; WHIS/14(Q))
provided thaff € L5/3(0,T; L'/4(Q)) anduy € D(A5+) N W22() for
somee € (0, 2).

Applying the imbedding?V 1%/14(Q) — L*/3(Q), we obtainp € L>3(0, T’
L33()).

Particularly, choosings = r = 2, we haveq = % and

Principle of the proof. Forl < a < oo, let A, be the Stokes operator in
Le(Q), i.e. A, .= —P,A with the domainD(4,) := W%(Q2) N W2¢(Q).
(P, is the Helmholtz projection il.“(£2).) The imbedding properties yield

140v], < el APv]l, for 1<b<a<oo %O‘ _ é < ? _ %
SinceAdyv = A,vforb < aandv € D(A,), we further write onlyA
instead ofA, or A;.



Consider the test function in (2.5) in the fomhix, t) = w(x) h(t), where
w € D(A% N Cx(Q) andh € C'([0,T)), h(T) = 0.

w = A3/4 A3 4w = A-3/4w, wherew = A3/4w
. p(x,t) = A7 (x) h(t)

The integral equation (2.5) takes the form

T
—/ (u, A=W )hdt+y/ (Vu, VA™*%) h dt
0 0

T
+/ (u-Vu, A7) dt = (uy, A7) h(0) + / (f, A=3/4%) h dt.
0 0

One can show thati - Vu € L"(Qr) for 1 < r» < 2. From this, one
can deduce thatl=**P,(u - Vu) € L*(Qr). Similarly, AA=%*u ¢
L*(Qr), which means thaP,AA~3*u € L?(Qr). Moreover, A3/ Pf €

(0, T; L2(Q)).



Thus, the integral equation can be rewritten:

T T
_ / (w, A% h dt — v / (A P Au, W) b di
0 . 0
+ / (A_3/4PT(U- : Vu), VNV) dt
0

T
— (A, RO+ [ (AREw) b
0

Considering at first functions such that.(0) = 0, we observe that

4 (A7, W) — v (RAA u, W) + (AP, (u- Vu), w)

dt
— (AAPf W)

a.e. in(0,7). Furthermore, considering all “admissible” functiolswe
obtain

(A7 4(0), w) = (A%, w).



Since

AV ) = (2047, w),

we also get
(A M) — v BLAA  u+ AP (u-Vu) = AP

(equation inL,(Q2)) for a.a.t € (0,7). From this, we getd,(A~%/"u) €
L7(0,T; L*(Q)) for~ := min{s;2}.

Considering.J;, .= (I + k~' A)~3/* instead ofA—3/*, we obtain
Oy Jyu — vy AJyu + JkPT(u . VU.) = Jkqu. (2.11)
This is the “regularized” Navier—Stokes equation.

The inclusionu - Vu € L*(0,T; L4((2)) follows from the definition of the
weak solution, particularly from € L2(0,T; W(Q2))NL>(0, T; L2(Q2)).



Thus, (2.11) can be treated as a linear equation
8t Jku — VPqAJku = Jk (qu — Pq(u . Vu)) (212)

(Sinceq < 2 andg < r, we may writeP,AJ,u instead ofP,AJ;,u and
P,(u- Vuinstead ofP,(u - Vu.)

Applying estimates which hold for this linear equation, we obtain
T
[ Qo+ 1 els,) at
< c\\Alé+eJkuO\\;+c/ |JPy(E — - T dt.

The right hand side is < cHAliﬂuon]Jrc/ |Py(f —u-Vu)||, dt.
0

Thus, considering the limit fot — oo in the left hand side, we ged,u,
Au € L*(0,T; LY%Q)).



The same procedure in (2.12) yields
ou = vP,Au+ FP,(f —u-Vu).
Since
vAu+ Fy(f —u-Vu) = Pj(vAu+f —u-Vu) + Vp,
whereVyp is uniquely determined, we obtain the equation
ou = —-Vp+rvAu+f—u-Vu (2.13)
in L*(0,7T; LIQ)).

More on the paper [37] (2008) by J. Wolf.

Functionu satisfies formally the N-S equation (2.1) (with= 0 andp =
po + Oipp, Wherep,, is harmonic) if and only iv := u + Vp,, satisfies

Ov+u-Vu+ Vpy = vAv. (2.14)



Multiplying this equation byy € C;°(Q) and integrating by parts, we
get

/ [_v.at¢+u-vu+VVV:Vgo} dxdt:/ po div o dx dt.

) (2.15)

On the other hand, ¥ satisfies (2.15) for alp € C5°(Q ) then function

u in L>(0,T; L2(Q)) N L*(0,00; W ,(9)) that differs fromv at most
by a gradient of a harmonic function, is a weak solution to the Navier
Stokes problem (2.1)—(2.4). If the difference- u is denoted by p,, then

po + Oipy, IS @ pressure associated with the weak solution

Using the representatiopi:= py+3|u/* and u-Vu = ;|ul*+curl uxu,
we can rewrite equation (2.14):

Ov+curlu xu+Vp = vAv. (2.16)



Letu € L(0,T; L2(22)) N L*(0, 00; W2(€2)) be a weak solution to the
Navier—Stokes problem (2.1)—(2.4). Thans said to be auitable weak
solutionif

e there existg, € LY/3(0, c0; L*(Q)) andp;, € C(Q) such that\p;, = 0,
e functionv satisfies (2.15) for alp € C*(Q~),

e and thelocal energy inequality

2 : 2
/Q\V(-,t)l (., t) dx+2u/0 /Q\W ¢ dx dt
< /0 /Q‘V’z(atﬁb+VA¢) dth—/O /Q(Vﬁhxcurl v) - ¢v dxdt

t
+/ /ﬁV-ng dx dt (2.17)
0 JO

for each nonnegative functiahe C°(Q.).



Inequality (2.17) can be formally obtained from (2.16) if one uses the fo
mulau = v + Vp,,, multiples (2.16) by»v and integrates i) .

Theorem 1.3 in Wolf’s paper [37] says:

Theorem 3.For all uy € L2(2), a suitable weak solution of the Navier—
Stokes problem (2.1)—(2.4) (in the sense of the previous definition) exist

Here, we restrict ourselves only to the question of existence of an app!
priate pressure, associated to a weak solutiohthe problem (2.1)—(2.4).

Let G be a domain ilR?, G C Q. LetW,;*(G) be the closure of$°(G) in
the norm||A . ||o. Define

AXG) = {Aue L}Q): ue W*(G)},
B*G) = {pe L*G); Ap=0inG}.
A%(G) ® B*(G) (by Weyl's lemma).

Then L%(G)



Lemma 7. If v € W, '*(Q) andp, € A%(G) are such that

(v, Vo) = /po A¢ dx forall ¢ € C°(G) (2.18)
G

then [lpolls ¢ < [[v*]-12:0-

Proof. (2.18) means that\p, = divv* in the sense of distributions (.

* V*a V*7
Vlome = sp W@l el
PEW,”(Q); p#£0 lepll12;0 PeW?(G); 970 leelhz:c
s lve
o=V ¢2£0; PpeC(G) Hvﬁme;Q
N (AR C]

o=Vo; 620 seco(@)  1AP]l2;c



’prO (A¢p +g) dX‘

> c sup
P=V¢; $p7£0; pcC°(G); geB%(G) HA¢ + gHL?;G
‘prOf dX‘
= c sup = c|lpoll2 ¢
rerzie) Wfllze

If we considerW,*(Q2) and W;*(Q) with the equivalent normgVe||,
and||A¢||-, respectively, then = 1.

Lemma 8. (= Theorem 2.2 in [37]Letu € C,([0,00); L2(Q)) and
he L] ([0,00); L?()%*?) satisfy

loc

/ [—u -Op+h: Vgo} dxdt = 0 (2.19)

oo

for all ¢ € Ci°(Q) such thatlive = 0. Let B CC ().



Then there exist functiong € L; ([0,00); A*(Q)) andp;, € C(Q x

loc
[0, 00)) such thatAp, = 0, (pr)p = 0 (i.e. the mean value ¢f, in B is
zero) and

/ [—u-@tcerh ; ch} dx dt

_/ [podive + Vpy, - Opp] dxdt+/u(.,0)-cp(.,()) dx (2.20)
% 0

for all p € C®(Q) With supp o CC Q2 x [0, 00).

Moreover,||po( ., t)|l2.0 < ||h(.,t)||2.q fora.a.t € [0,00), and for each
Lipschitzian domairiz C C (2 there exists a constant such that

/Oth(.,s)ds Q;Q)

B Bl < e <Hu(-,t)—u(-,0)Hz;a+|

fora.a.t € [0, 00).




Roughly speaking, Lemma 8 says thatiit C,,([0, c0): L2(Q2)) andh €
Li ([0, 00); L?(2)3*3) satisfy the equation

loc
v = P,(divh) (2.21)

as an equation iW&i’Q(Q), satisfied a.e. if0, oo), then there exist appro-
priate functionsg, andp;, (p;, harmonic) such that the equation

du = —Vp+divh (2.22)

holds in the sense of distributionsdh, with p = py + 9;ps..



The proof essentially uses the next Lemma 9, which, again roughly spe:
ing, says that iU € L2(Q) andv* € W, '*(Q) are such that

U+P,vi =0

(an equation inW(;(lj’Q(Q)) then there exist unique appropriate functions
po € A2(Q) andp, € C*(Q) with Apy, = 0, (pr)p = 0 (WwhereB is any
domainC C §2) such

U+v' = -Vp

(an equation ifW, *(Q)) with p = py + pj.



Lemma 9. Let B CcC ( be an arbitrary domain and lefU € L2(Q)
and v* € W, *(Q) satisfy

/U-godx—l—(v*,go> = 0 (2.23)
0

for all ¢ € C§,(Q2). Then there exist unique functiops € A*(2) and
pr € C™(82) with Apy, = 0 and(p,) s = 0, such that

/ U-pdx+ (v ) = /(po + pp) div o dx (2.24)
0 0

for all ¢ € C(§2). Moreover, ||polls < ||v*]|-12 and for each
Lipschitzian domainG CC () there exists a constant; such that

Ipollz < ca (I0l2 + [IV*]l-12)-




Principle of the proof of Lemma 9. Let{); C {2, C ... be a sequence of
bounded Lipschitzian domains such that= | J,~, Q. Fork € N, define

(Wi@) = | U-pdx+(vi,@)  foree Wy(y).
Qp

Clearly, w} vanishes ofW,7(¢;). Hence there exists, € L*((;,) such
that

(W, ) = /Q pr div o dx for all o € W% ().
k

Moreover, there exist uniquey, € A%*(Q;) andpy,, € B%(Q;) such that
Dk = Pok + Dhk-

Finally, extendingyy. andp;,;. by zero to() \ €, and considering the limits
for k — oo, one obtains functiong, andp;,.



Principle of the proof of Lemma 8. Applying (2.21) toyy € Cg,(€2) and
integrating with respect to time fromto ¢, we obtain

/[u(.,t)—u( 0)] -9 dx = —/<73 (divh), %) dt
0

_ /0t<d1vh¢ //h Ve dxdt
- —/E< ) Vap dx,

where h(. = fo ) dr. Due to Lemma 9, there exist unique
functlonSpO( ) e A%(Q ) andph( .,t) € B*Q) such thaty ¢ € C(Q):

~

/[u(.,t)—u(.,O)} ~'c,bdx+/h(.,t):V1,bdx
Q 0

_ L[ﬁg(t)+5h(t)} divep dx = —(Viy+ Vi, 9. (2.25)



Particularly, considering in the formi = V¢ for somep € C°(€2), we
get

/H(.,t):vngdx = /ﬁo(.,t)AqbdX.
0 0

From this, one can deduce that

IPo(-,8) = Do+ t)lla < |[h(.,s) =h(.,?)][2 < /IIh M2 dr

for0 < ¢ < s < co. Furthermore,p, € C([0,00); L*(Q2)) and py ==
O € Li, ([0, 00): L(%)).

Consideringy in (2.25) in the formy = 0;¢( ., t), wherep € Ci°(Q),
and integrating ovell), co), we get (2.20). For more details (including the
information thatp;, € C(2 x [0, 00))), see [37].



Existence of a pressuravith the properties stated in Wolf’s definition of
a suitable weak solution:

Consider the Navier—Stokes equation in the form (2.8) With0, i.e.
u — vP,(Au) + P,(u-Vu) = 0.

It corresponds to equation (2.21). Due to Lemma 8, there exmish that
p = po + Oipy, Wherep, andp,, have the properties stated in Lemma 8, anc
u andp satisfy the Navier—Stokes equation in the sense of distributions

Qr.



3. An interior regularity of pressure under Serrin’s conditions
and relation to the boundary conditions.

In this section, we assume for simplicity tHat 0. Thus, the considered
Navier—Stokes system is

Ju+u-Vu+ Vp = vAu, (3.1)
divua = 0. (3.2)

If (¥ is a domain inR? and—oco < t; < t» < oo thenu € is said to be
aweak solution to the system (2.1), (2.2)Ihx (t1,t5) (with f = 0) if it
satisfies

T
/ /[—u-&@—kuVu:Vcb—ku-Vu-qb]dxdt:O
0 JQ

forall ¢ € C5° (€ x (t1,%2)) such thawp(.,T) = 0 such thatliv ¢ = 0.



The next lemma on the interior regularity concerns the weak solution

the Navier-Stokes system (2.1), (2.2)thx (t1,t2) C Q2 x (0,T). (See
J. Serrin [26].)

Lemma 10.Let() be a domain ilR3 and letu be a weak solution to the

Navier—Stokes system (2.1), (2.2)¥x (¢, t2). Suppose thai satisfies
Serrin’s condition

e u € L'(ty,ty; L?((Y)) for somer,s € R such that2/r + 3/s = 1,
s > 3.

Thenu with all its space derivatives is bounded on every compact subse
of () x (tl, tg).

Moreover, ifo;u € L%(ty, to; L)) for someg > 1 thenu and each its
space derivative are absolutely continuous functions of time.



A similar statement can also be provefifis bounded anad € L>(t1, to;
L3(€)) with the norm ofu in this space “sufficiently small”.

Typically, the lemma provides information on the regularitynoi 2" x
(t1 + & to — &), whereQ” CcC Q' andt; <t +& <ty — & < ty. Itimplies
thatu is in C>*(Q2") at each time € (t; + &, to — &). However,it does
not say anything about the regularity wfin the direction oft and it says
nothing about the associated pressure.

On interior regularity of 9,v and p.

Theorem 4. Let (2 be a bounded or exterior domain with a smooth
boundary, or a half—space. Let be a weak solution to the Navier—
Stokes problem (2.1)—(2.4), satisfying the assumptions of Lemma 1
Thend,v andp have all spatial derivatives in®(t; + &, to — &; L>°($2"))
for eacha € [1,2), whereQ?” CcC ' is a bounded domain.




The theorem is essentially due to J.N. and P. Penel [19] (2001) and AkSke
P. Kucera [29] (2003).

Principle of the proof. Due to [35], the associated presspiis in L*(t; +
Et— & LP(Q))foralll < a< 2,2 < 8<3,2/a+3/6 = 3. Applying
the operator div to the Navier—Stokes equation, we obtain the equation
Ap = —0iu; Oju;, (3.3)
satisfied in) in the sense of distributions at all times (¢, + £,t, — £).

Since the right hand side is “smooth” ¥ (due to Lemma 10)p is also
“smooth” in (Y.

Let 6 > 0 be so small that/,5(2") C €. Denote by an infinitely
differentiable cut—off function defined iR? such that) < 1) < 1 and

v = 1 onU;(Q)"),
L0 onR3 N Uss (7).



The producty p satisfies

1 1
AT Jgs [x =y

b(x)p(x,t) = Alp) ]y, ) dy. (3.4

Using equation (3.3), we get

A(pp) = (AY)p+2Vy - Vp — ¢ 0:0;(uu;).
Substituting this to (3.4) and applying integration by parts, we get (fc
x € Q).
P(x)p(x,t) = p'(x,t) +p"(x,1)

where
1 1
AT Jgs [x — Y|

p](X7 t) = W aiuj aj“’@] (Y7 t) dy7



1 1
AT Jps [x — Y|

pH(x,t) = [p AY](y, 1)

1 X—Yy

+ [V p](y.t) dy

21 Jrs [x — y[?
1 A -

_ 1 ( Yy L, X Y
dr Jp\|lx—y|  [x—Y]|

u and its spatial derivatives are boundedsapp ¢ x (t1 +&,t2 —€), hence

1 1

AT Jps [x =y

- w<y>) p(y, 1) dy.

}Vkp[(x, t)‘ = ‘kapf(x, t)| = [Vyk(w O @-ui)](y,t) dy‘

< c(k).

The first two integrals in the expressiondf can be estimated in the same
way.



The integrand in the last integral the representatiop’6fis supported
only fory € Uss(Q2") ~ Us(£2"), where|x — y| > §. Hence the modulus
of any spatial derivative of this integral (i.e. the derivative with respect t

components oxk) is
« to «
i< [ pvoray) a
1 supp V¢

< /:/R?)(---)p(y,t)dy
< c(k) /t1 ’ < /U o p(y, t)|” dyy/ﬁ dt,

where( is chosen so thak/a + 3/3 = 3. Dueto [35], p € L%(t1,ts;
LP(Us(Y)) for1 < a < 2,2 < 3 < 3suchthat2/a +3/3 = 3. Hence
the last integral is finite.

Remark 6. The assumptions on the smoothnesg$@fare needed when
we apply [35].



Remark 7. The information on the rate of integrability pfandd,u in
time can be improved P = 0, i.e.Q) = R?. In this cased,v andp have
all spatial derivatives i.>°(t, + 9,to — d; L>(Q")). (See Z. Skalk and
P. KuCera [29] (2003) and J.N. [20] (2003).)

A similar result can also be obtainedifis assumed to satisfy the so called
Navier—type boundary conditions, i.e.

u-n = 0
curluxn =0

onl'y (=00 x (0,T)).



4. An influence of pressure on the regularity of a weak solution.
Regularity criteria in terms of pressure.

Most of the authors considér= 0. Many results are formulated fér C
R". However, here we consider only= 3.

e S. Kaniel [14] (1969) assumed thatis a Leray—Hopf weak solution
to the Navier—Stokes problem (with= 0) in Q x (0,7T), where( is a
bounded domain iiR?, andp is an associated pressure. He proved tha

the conditionp € L>(0,T; L%(2)), ¢ > +* guarantees that solutian
IS regular.

e The result was later improved by L. Berselli [2] (1999), who provec
thatifp € L(0,T; L3>*/(«t1)(Q)) for somea > 3 thenu is regular.



e For other improvements (using the wellk-space ovef)) see
H. Beirao da Veiga [1] (1998).

e D. Chae and J. Lee [7] (2001): the Navier—Stokes problem fvith
0 in R x (0,7). They showed that i1, € LZ(R%) N L¢(R?) for
someqg > 3, u is the Leray—Hopf weak solution if0,7") andp is
in L7(0,T; L*(R?%)) for somel < r < oo, 2 < s < oo, satisfying
2/r +3/s <2,0rpc L0, T; L*(R?)), orif p € L>(0,T; L*?(R?))
(with the corresponding norm sufficiently small) thes a regular so-
lution.

e L. Berselli and G. P. Galdi [3] (2002) extended the previous result t
the case2/r +3/s = 2 (with 1 < r < 00). They also considered the
analogous condition oWp with 2/r +3/s =3,1 < r < 3,



e G. Seregin and \Sveik [25] (2002) considered a suitable weak solu-
tionu, pinR? x (0, 7).

The authors say that a scalar functipnR? x (0, co) — [0, o) satisfies
condition (C)if to anyt, > 0 there existgd?, > 0 such that

A(ty) == sup  sup / 91, 1) dx < oo
|

X()E]Rg to—R%StStO x—x0| <Ry ’X T XO‘
and for each fixec, € R* and each fixedz € (0, R] the function
9(x,t)

|x—xp|<R |X - XO‘

dx

t —

IS continuous at, from the left.



The main result of [25] says that if there exists functipsatisfying
condition (C) so that the normalized pressure

1 1

satisfies
lu(x, t)|* + 2p(x,t) < g(x,t) forallx e R’, 0 <t < oo (4.1)
or
p(x,t) > —g(x,1) forallx e R, 0 <t < o0 (4.2)

thenu is regular inR?* x (0, co).



e J. N&as and J. Neustupa [18] (2002) proved the regularity of a suitab
weak solutionu, p at the space—time poifk, ¢ty) under the conditions
that there exist > 0 (arbitrarily small) andp» > 0 (arbitrarily large)
such that

o the negative pani_ of the pressure is integrable with exponents
2, 00) (intime) ands € (2, 0o) (in space), such thaya+3/3 = 2,
over

VI = {(x,t) € Qr; to— 17 /p" <t < to, |x —x¢| < €(t)p}

wheree(t) .= /) — t,

o the velocity is integrable with the exponentgin time) andb (in
space) such that € [3,00), 8 € (3,00), such that/a + 3/b = 1,
over

Ul = {(x,t) € Qr; to—1°/p> <t <y, (t)p < |x—x¢| <}

r



e K. Kang, J. Lee [12] (2006) and [13] (2010): considered a smoot
bounded domaif2 C R? and the initial velocityu, in L2(Q) N L3(Q).
They assumed that is a weak solution with an associated pressure
and they proved regularity af provided that

p € L7(0,T; L*()) with2/r +3/s <2, 3 < s < o0,
or Vpe L"(0,T; L*(2)) with2/r+3/s <3, 1 < s < oc.
e Y. Zhou [38, 39] (2006): technical improvements of the results fron

[3] ... Vpis supposed to be in" (0, T; L(R?)) with 2/r + 3/s = 3,
1<s<oo,§<7“<oo.

e J. Fan, S. Jiang and G. Ni [9] (2008): considefed= R?, obtained
results in Morrey and Besov spaces.



e Z. Cai, J. Fan and J. Zhai [6] (2010) proved the regularity of a Leray
Hopf weak solution1 (with an associated pressuyrgif one of the con-
ditions holds

ope€ L"(0,T; L¥*(R3)) with2/r +3/s =2,1 < r < oo,

op € L>(0,T; L>*>>(R?) with the corresponding norm “suffi-
ciently small”,

o Vp € L'(0,T; L**(R%) with 2/r +3/s = 3,2 < s < 00,1 <
r < 0o,

o Vp € L*3(0,T; L>>>(R?)) with the corresponding norm “suffi-
ciently small”.



e S. Suzuki [34] (2012) considered a bounded smooth dofmaind the
initial velocity in Wéf,(Q) N L>*(Q2). She proved the regularity of an
existing weak solution if an associated pressupeis in the Lorentz
spaceL”>(0,T; L¥*())) with the corresponding norm “sufficiently
small”, where

2 3 D
—+-=2 =-<qg<3, 2<r<
roq 2
or, alternatively, itVpisin L">°(0, T’; L°°(£2)) with the corresponding
norm “sufficiently small”, where
2 3 D
-+-=3, -<g<3, l<r<
r q 2

DO | Ot

Y

W | Ot



e S. Bosia, M. Conti and V. Pata [4] (2014) considered eithé&ounded
or Q = R?, and a Leray—Hopf weak solutian They proved the regu-
larity criterion, saying that the identity

Te
lim inf /2 / IVp(. A0 dt = o0,
0

e—0

whereT, .= T — e /¢ e > 0,and2/r +3/s = 3,1 < s < 3, implies
that solutionu is regular inQ.



More on the paper [3] (2002) by L. Berselli and G. P. Galdi.

The results and proofs are formulated for= R”. However, here we
consider only the case = 3.

The advantage of the whole spdee= R?: one can use the inequality
Ipll, < cllull,  forl <g< oo, (4.3)

obtained from the equationsp = —0,0;(u;u;) by means of the Calderon—
Zygmund inequality.

The initial velocity is assumed to be Iy (R*)NL3(2). This guarantees the
existence of a “strong” solution on some time interiall;). The authors
show that, under some conditions @rone had = 7.

Multiplying the Navier—Stokes equation (2.1) (wifh= 0) by |u|u and
integrating inR?, one gets



L d 3 2 v 3/2|2
3T |3 + V/R3 lu||Vul|” dx + 5 | Vul / I
2
<3 / pl [u]'/? |V ]ul*’?] dx. (4.4)
R3

Applying (4.3), interpolation inequalities and the Young inequality, the
authors estimate the right hand side from above by something that c
be absorbed by the left hand side + something that is integrable with 1
spect tat on (0, T') times||u||3. Then, from Gronwall's inequality, one gets

u € L>(0,T; L3(R?), and especially

Viul? € L*0,T; L*(R?) = |ul’? € L?*(0,T; LS(R?))
— u € L}0,T; L°(R?)),

which is the class of regularity.



Recall thatp is supposed to be ih" (0, T; L*(R?)) for r, s, satisfying cer-
tain conditions. Since (4.3) is not neede§ K s < 3, the results hold, for
theses, also in a half—space or in a smooth bounded dorfidimR? or in
a smooth exterior domain in R?.

Finally, the authors show thatf = R® or Q2 is any of the domains named
above and iVp € L"(0,T; L*(Q2)) for somer, s such that/r + 3/s = 3,

% < s < 3, thenu is regular. This generalizes previous results from
[22]. The trick is that the right hand side of (4.4) is treated in the forn

Jo Vp - uu| dx and is not modified by the integration by parts.



More on the papers [12, 13] (2006, 2010) by K. Kang and J. Lee.

The authors, in addition to inequality (4.4), also multiplied the Navier-
Stokes equation by [u|?>. By analogy with (4.4), they obtained

1 d
4 dt

In the cases > 3, the right hand side is

lullt + v / |Vl du < c / 9| [V [uf? dx.

AN

< clVully Ipll [Pl o < clVullalpll il < -

Finally, applying interpolation inequalities, Young’s inequality, imbedding
inequalities and Gronwall's inequality, the authors estimated > (¢, T’
LY(Q)) (for anye > 0), which is the class of regularity.

This procedure enabled the authors to avoid inequality (4.3), obtained
means of the Calderon—Zygmund theorem.



More on the paper [25] (2002) by G. Seregin and \Sverak.

The authors fix a representativewtuch that

hgn}fnf Hu( . ,t)HQ > Hu( . ,tO)HQ forall0 <ty < T
-0

andu is weakly continuous front0, 7") to LZ(R®). They prove the two
lemmas (= Lemma 3.2 and Lemma 3.3 in [25]):

Lemma 11.GivenQy CC 9,0 <ty < T and0 < &y < /1. If

|
Q(Q07t0750) .= Sup {E HU.( y 7t)H2;BR(X0); Ty € QO) S [t() o 587150}7
|
0<R<dy= 5dist(aQ,QO)} <

then lim |ju(.,t) —u(.,to)|20, = O.

t—to—



Lemma 12. Letu, p be a suitable weak solution to the Navier—Stokes
problem inQr = R’ x (0,T) andf € M, ,(Qr) (the Morrey space) for
somey > 0. There existgs, > 0 (depending only or) such that if for
someR, > 0, Q(z, R,) C Qr and

1 2
sup sup — ||lu(.,t oy < Es (4.5)
I ., D)5, x0)

thenz, is a regular point of solutionu.

Here,zy = (X(), t()) andQ(Zo, R) = BR(X()) X (to — RQ, t()).

The principle idea of the proof is to show that (4.5) implies that

1
— ([uf® + [p|*?) dxdt < ce,
P~ JQ(z0.p

(wherec is independent ob) for all p sufficiently small.



The authors prove the identities

1
2p(y, t) + [@(y, 1)) dy
/BR(XO) ’y - XO‘ ( )

1
_ / © (3p(y,t) + [uly, ) dy
Br(xo) 2

1
= 2 2 a u .
- R /IR?’\BR(XO) vy<‘y_X0’) u(y,t) @uly.t)] dy, (4.6)

where
u(y,t) - (y —xo)] (y — x0)
|y — %o/ '

Assume that, is the first instant of time when a singularity appears.

u(y,t) = uly,t) -



For0 < t < ty, applying energy estimates,0ldler’s inequality and esti-
mates of singular integrals following from the Calderon—Zygmund theon
the authors derive
lim  sup / lu(x,t)]* dx = 0.
R3\ Bp(0)

R—o0  o<t<ty

Since liminf / lu(y,t)]* dx > / lu(x, to)]? dx,
t=to—  JR3BR(0) R3~.Bp(0)
we get
lim  sup / lu(x,t)|* dx = 0. (4.7)
R—00 0<t<ty JR3Bp(0)

Further, the authors use identities (4.6), Lemma 11 and either conditi
(4.3) or condition (4.4) and prove that for apy> 0

tE%l_ Hu( . >t) - U.( . 7t0)||2;Bp<XO) = 0.



From this and (4.7), they deduce that
lim |ju(.,t) —u(.,t)|2 = 0. (4.8)

t—to—
(Recall thatl| . ||» = || . |2:, Which is now]| . [|5. gs.)

As an intermediate result, using identities (4.6) and condition (4.3), tt
authors derive the inequality

1 1 g(x,t uXo(x, to)|?
G Doy < 5 [ gD e [ B ax
BRX() ‘X_XO‘ BR(X()) ‘X_X()’

< /B ! [g(x, t) — (]u(x, t)* + 2p(x,t))] dx, (4.9)

]X—x0|

where
u(y,?) - (y —xo)] (y — x0)
ly — xo/? '

u(x,t) =



Let e, be the number from Lemma 12. There exiBts> 0 such that

1 t uxo(x, to)|?
[ [ B,
2 Bp, (x0) |X XO‘ Bp, (x0) |X_XO‘

+ /B 1 [9(x,t0) — (lulx, to)]* + 2p(x, ty)) ] dx

]X—XO\

3 t
_ _/ g(X7 0) dx
2 B, (x0) [x — x|
€x

R / K(x,%0) : (u(x, to) ® u(x, o)) dx < =,
R3~Bp, (x0) 2

where

K(x,xq) = Vi( ! )

Ix — X



Due to (4.8) and the weak’—continuity ofu, the function

3 t
L _/ gxt)
2 Bg, (x0) ’X—Xo\

— Ri/ K(x,x¢) : (u(x,t) @ u(x,t)) dx
R?’\BR*(XQ)

IS left—continuous at poirtt. Hence there exists > 0 (sufficiently small)
such that

1 t u¥o(x, t)[?
AN I L
2 J By, (x0) X = X0l Bi,(xg) X~ X0l

+/BR - ‘X_lx‘ [g(x,t) — (Ju(x, ) + 2p(x, 1))] dx < %

forall ty — 62 <t < t.



However, then (4.9) yields

forty — 62 <t < t,.

Due to Lemma 12z, = (xy, t() IS a regular point of solution.

Recall that we have used inequality (4.9), which follows from (4.6) an
condition (4.3). Moreover, condition (4.3) has also been used in order
obtain (4.8).

If one uses condition (4.4) instead of (4.3) then the procedure is analogo
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