
The Role of Pressure in the Theory of Weak Solutions

to the Navier–Stokes Equations
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1. Notation, auxiliary lemmas.

Ω . . . a domain inR3

• C∞0,σ(Ω) . . . the linear space of infinitely differentiable divergence–free
vector functions inΩ, with a compact support inΩ,

• L2
σ(Ω) (for 1 < q <∞) . . . the closure ofC∞0,σ(Ω) in Lq(Ω),

• W1,2
0,σ(Ω) . . . the closure ofC∞0,σ(Ω) in W1,2(Ω),

• W−1,2
0,σ (Ω) . . . the dual space toW1,2

0,σ(Ω),

• W−1,2
0 (Ω) . . . the dual space toW1,2

0 (Ω).

• The duality between elements ofW−1,2
0,σ (Ω) andW1,2

0,σ(Ω) is denoted by
〈 . , . 〉σ, while the duality between elements ofW−1,2

0 (Ω) andW1,2
0 (Ω)

is denoted by〈 . , . 〉.
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Obviously, W1,2
0,σ(Ω) ⊂ W1,2

0 (Ω) (with the same norms). Hence, iff ∈
W−1,2

0 (Ω) then f is also a bounded linear functional onW1,2
0,σ(Ω) in the

sense that the duality betweenf andϕ ∈W1,2
0,σ(Ω) is 〈f ,ϕ〉. Thus, in this

senseW−1,2
0 (Ω) ⊂W−1,2

0,σ (Ω) (algebraically).

However, in order to avoid confusion, it is further advantageous to distin-
guish between 1)f as an element ofW−1,2

0 (Ω) (which acts on elements of
W1,2

0 (Ω) through the duality〈 . , . 〉) and 2)f as an element ofW−1,2
0,σ (Ω)

(which acts on elements ofW1,2
0,σ(Ω) through the duality〈 . , . 〉σ). There-

fore we prefer to writePσf instead off in 2).

More precisely, we definePσ as a linear mapping ofW−1,2
0 (Ω) toW−1,2

0,σ (Ω)

by the equation

〈Pσf ,ϕ〉σ := 〈f ,ϕ〉 for all f ∈W−1,2
0 (Ω) andϕ ∈W1,2

0,σ(Ω).
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Lemma 1.Pσ is bounded,R(Pσ) = W−1,2
0,σ (Ω), Pσ is not1–1.

Proof. Pσ is bounded:Let f ∈W−1,2
0 (Ω). Then

‖Pσf‖W−1,2
0,σ

= sup
ϕ∈W

1,2
0,σ; ϕ 6=0

|〈Pσf ,ϕ〉σ|
‖ϕ‖

W
1,2
0,σ

= sup
ϕ∈W

1,2
0,σ; ϕ 6=0

|〈f ,ϕ〉|
‖ϕ‖

W
1,2
0

≤ sup
ϕ∈W

1,2
0 ; ϕ 6=0

|〈f ,ϕ〉|
‖ϕ‖

W
1,2
0

= ‖f‖W−1,2.

Pσ is onto: given w ∈ W−1,2
0,σ (Ω), there exists (by the Hahn–Banach

theorem) an extensionwext ∈W−1,2
0 (Ω) such that〈wext,ϕ〉 := 〈w,ϕ〉σ

for all ϕ ∈W1,2
0,σ(Ω). Hencew = Pσ(wext).

Pσ is not1–1: taking f = ∇g for g ∈ L2(Ω), we getPσf = 0. �

1. Notation, auxiliary lemmas. 5 / 88



Remark 1. If v ∈ L2(Ω) andϕ ∈W1,2
0,σ(Ω) then

〈Pσv,ϕ〉σ = 〈v,ϕ〉 =

∫
Ω

v ·ϕ dx

=

∫
Ω

v · Pσϕ dx =

∫
Ω

Pσv ·ϕ dx = 〈Pσv,ϕ〉σ.

HencePσv = Pσv, wherePσ is the Helmholtz projection inL2(Ω).

Particularly, ifv ∈ L2
σ(Ω), we havePσv = v. �

In order to obtain more information on the spaceW−1,2
0,σ (Ω), its relation to

W−1,2
0 (Ω), and on mappingPσ,

• we denoteW1,2
0,σ(Ω)⊥ :=

{
f ∈W−1,2

0 (Ω); ∀ϕ ∈W1,2
0,σ(Ω) : 〈f ,ϕ〉 = 0

}
(the space of annihilators ofW1,2

0,σ(Ω)),
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• for f ∈ W−1,2
0,σ (Ω), we denote byfext an extension off to a bounded

linear functional onW1,2
0 (Ω) – the extension exists due to the Hahn–

Banach theorem and satisfies

〈fext,ϕ〉 = 〈f ,ϕ〉σ for all ϕ ∈W1,2
0,σ(Ω),

• we define mappingσ : W−1,2
0,σ (Ω) → W−1,2

0 (Ω)
∣∣
W

1,2
0,σ(Ω)⊥ (the quotient

space) by the equation

σ(f) := fext + W1,2
0,σ(Ω)⊥.

In fact, the definition of mappingσ is independent of the choice of a con-
crete extension off ∈W1,2

0,σ(Ω) to fext ∈W−1,2
0 (Ω): let f ′ext andf ′′ext be two

such extensions. They coincide onW1,2
0,σ(Ω), hencef ′ext− f ′′ext ∈W1,2

0,σ(Ω)⊥.
Denote byσ′ the mapping defined by means of the extensionf ′ext and by
σ′′ the mapping defined by the extensionf ′′ext. Then, forf ∈W−1,2

0,σ (Ω), we
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have

σ′f − σ′′f = (f ′ext − f ′′ext) + W1,2
0,σ(Ω)⊥ = W1,2

0,σ(Ω)⊥,

which is the zero element of the quotient spaceW−1,2
0 (Ω)

∣∣
W

1,2
0,σ(Ω)⊥.

Applying [24, Theorem 4.9], we obtain

Lemma 2. σ is an isometric isomorphism ofW−1,2
0,σ (Ω) onto

W−1,2
0 (Ω)

∣∣
W

1,2
0,σ(Ω)⊥.

If we denote byq the so calledquotient mappingof W−1,2
0 (Ω) onto

W−1,2
0 (Ω)

∣∣
W
−1,2
0,σ (Ω)⊥, which is the mapping defined by the equation

q(g) := g + W−1,2
0,σ (Ω)⊥ for g ∈W−1,2

0 (Ω),
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then we naturally have W−1,2
0 (Ω)

∣∣
W
−1,2
0,σ (Ω)⊥ = q

(
W−1,2

0 (Ω)).

Moreover, we also have W−1,2
0 (Ω)

∣∣
W
−1,2
0,σ (Ω)⊥ = σ

(
W−1,2

0,σ (Ω)).

Henceσ−1q mapsW−1,2
0 (Ω) ontoW−1,2

0,σ (Ω). Concretely, ifg ∈W−1,2
0 (Ω)

thenσ−1q(g) is an elementf ∈ W−1,2
0,σ (Ω) such thatσ(f) = q(g), which

means that
fext + W−1,2

0,σ (Ω)⊥ = g + W−1,2
0,σ (Ω)⊥.

Hencefext − g ∈W−1,2
0,σ (Ω)⊥. Consequently,

〈g,ϕ〉 = 〈fext,ϕ〉 = 〈f ,ϕ〉σ,

for all ϕ ∈W1,2
0,σ(Ω). This yieldsf = Pσg. Sincef = σ−1q(g), we obtain:

Lemma 3. Pσ = σ−1q
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The next lemma provides more information on elements ofW1,2
0,σ(Ω)⊥ in

the case of domainΩ that satisfies the cone condition.

Lemma 4. Let Ω be bounded or exterior domain inRn (n ≥ 2), that
satisfies the cone condition. LetF ∈ W−1,2

0 (Ω) be a bounded linear
functional onW1,2

0 (Ω), that vanishes onW1,2
0,σ(Ω) (i.e.F ∈W1,2

0,σ(Ω)⊥).
Then there exists a functionp ∈ L2(Ω) such that

F(v) =

∫
Ω

p div v dx

for all v ∈W1,2
0 (Ω). Functionp is determined by functionalF uniquely

(up to an additive constant in the case ofΩ bounded).

The lemma follows from [10, Corollary III.5.1]. The right hand side can
also be written in the form〈∇p,v〉, where∇p is the gradient ofp in the
sense of distributions.
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The next lemma holds for any domainΩ. It tells us what form has a distri-
bution that vanishes on divergence–free functions.

Lemma 5. Let Ω be any domain inRn (n ≥ 2) and f = (f1, . . . , fn),
wherefi (i = 1, . . . , n) are distributions inΩ. Thenf has the form
f = ∇p (wherep is a distribution inΩ and∇p is the distributional
gradient) if and only if

〈f ,ϕ〉 = 0 for all ϕ ∈ C∞0,σ(Ω).

The lemma coincides with Proposition I.1.1 in [36]. It comes from G. De
Rham.
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The next lemma plays an important role in studies of non–steady problems.
It coincides with Lemma III.1.1 in [36].

Lemma 6. LetX be a Banach space with the dualX ′ and letu, g ∈
L1(a, b; X). Then the following three conditions are equivalent:

• u is a.e. in(a, b) equal to a primitive function ofg,

•
∫ b

a

ϑ̇(t) u(t) dt = −
∫ b

a

ϑ(t) g(t) dt for all ϑ ∈ C∞0 ((a, b)),

• d

dt
〈η,u〉 = 〈η,g〉 in the sense of distributions in(a, b) for each

η ∈ X ′.

(Here,〈 . , . 〉 denotes the duality betweenX ′ andX.)
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2. A pressure associated with a weak solution to the
Navier–Stokes equations.

Ω . . . a domain inR3, T > 0,

QT := Ω× (0, T ),

ΓT := ∂Ω× (0, T )

The Navier–Stokes initial–boundary value problem inQT :

∂tu + u · ∇u +∇p = ν∆u + f in QT , (2.1)

div u = 0 in QT , (2.2)

u = 0 in ΓT , (2.3)

u|t=0 = u0 in Ω. (2.4)
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The weak formulation of the IBVP problem (2.1)–(2.4):

Givenu0 ∈ L2
σ(Ω) andf ∈ L2

(
0, T ; W−1,2

0,σ (Ω)
)
.

We look for u ∈ L∞
(
0, T ; L2

σ(Ω)
)
∩ L2

(
0, T ; W1,2

0,σ(Ω)
)

(the so called
weak solution) such that∫ T

0

∫
Ω

[
−u · ∂tφ + ν∇u : ∇φ + u · ∇u · φ

]
dx dt

=

∫
Ω

u0 · φ(x, 0) dx +

∫ T

0

〈f ,φ〉σ dt (2.5)

for all φ ∈ C∞
(
[0, T ]; W1,2

0,σ(Ω)
)

such thatφ( . , T ) = 0.
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1st equivalent formulation (see e.g. [36]) :

Given u0 ∈ L2
σ(Ω) and f ∈ L2

(
0, T ; W−1,2

0,σ (Ω)
)
. We look for u ∈

L∞
(
0, T ; L2

σ(Ω)
)
∩L2

(
0, T ; W1,2

0,σ(Ω)
)

such thatu satisfies the initial con-
dition (2.4) and

d

dt
(u,ϕ) + ν 〈Au,ϕ〉σ + 〈B(u,u),ϕ〉σ = 〈f , ϕ〉σ (2.6)

for allϕ ∈W1,2
0,σ(Ω) and a.e. in(0, T ), where the operatorsA : W1,2

0,σ(Ω)→
W−1,2

0,σ (Ω) andB : W1,2
0,σ(Ω) ×W1,2

0,σ(Ω) → W−1,2
0,σ (Ω) are defined by the

equations〈
Av,ϕ

〉
σ

:=

∫
Ω

∇v : ∇ϕ dx for v,ϕ ∈W1,2
0,σ(Ω),〈

B(v,w),ϕ
〉
σ

:=

∫
Ω

v · ∇w ·ϕ dx for v,w,ϕ ∈W1,2
0,σ(Ω).
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It is easy to verify that ifu is a weak solution then

Au ∈ L2(0, T ; W−1,2
0,σ (Ω)),

B(u,u) ∈ L4/3(0, T ; W−1,2
0,σ (Ω)).

Applying Lemma 6 (withX = W−1,2
0,σ (Ω)), we deduce that (2.6) is equi-

valent to
u′ + νAu + B(u,u) = f , (2.7)

which is an equation inW−1,2
0,σ (Ω), satisfied for a.a.t ∈ (0, T ). Here,u′

denotes the derivative with respect tot of u, as a function from(0, T ) to
W−1,2

0,σ (Ω). Thus, we obtain:

2nd equivalent formulation: Given u0 ∈ L2
σ(Ω) and f ∈ L2

(
0, T ;

W−1,2
0,σ (Ω)

)
. We look foru ∈ L∞

(
0, T ; L2

σ(Ω)
)
∩L2

(
0, T ; W1,2

0,σ(Ω)
)

such
thatu satisfies the initial condition (2.4) and the equation (2.7) is satisfied
for a.a.t ∈ (0, T ).
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Since〈
Av,ϕ

〉
σ

= 〈−∆v,ϕ〉 for v,ϕ ∈W1,2
0,σ(Ω),〈

B(v,w),ϕ
〉
σ

= 〈v · ∇w,ϕ〉 for v,w,ϕ ∈W1,2
0,σ(Ω).

we have: Av = Pσ(−∆v) and B(v,w) = Pσ(v · ∇w). Thus, equation
(2.7) can also be written in the form

u′ − νPσ(∆u) + Pσ(u · ∇u) = f . (2.8)

Since all the termsPσ(∆u),Pσ(u ·∇u) andf are inL4/3(0, T ; W−1,2
0,σ (Ω)),

u′ is inL4/3(0, T ; W−1,2
0,σ (Ω)), too.

Associated pressure.Let u be a weak solution to the problem (2.1)–(2.4).
If there exists a distributionp in QT such that the Navier–Stokes equation
(2.1) is satisfied inQT in the sense of distributions thenp is called an
associated pressureto the weak solutionu.
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Remark 2. u′ cannot be identified with the distributional derivative ofu,
as a function from(0, T ) to W−1,2

0 (Ω).

In order to show it, denote the distributional derivative ofu, as a function
from (a, b) to W−1,2

0 (Ω), by u̇ and assume thaṫu ∈ L1(a, b; W−1,2
0 (Ω)).

Then we have

d

dt
(u,ϕ) =

d

dt
〈u,ϕ〉 = 〈u̇,ϕ〉

for ϕ ∈W1,2
0 (Ω).

Particularly, ifϕ ∈W1,2
0,σ(Ω) then 〈u̇,ϕ〉 = 〈Pσu̇,ϕ〉σ.

For theseϕ, we also have

d

dt
(u,ϕ) =

d

dt
〈u,ϕ〉σ = 〈u′,ϕ〉σ.

From this, we obtain:u′ = Pσu̇. �
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Existence of an associated pressure.Let u be a weak solution. Assume
that f = Pσ f̃ , wheref̃ ∈ L2(0, T ; W−1,2

0 (Ω)). Then equation (2.8) takes
the form

u′ − νPσ(∆u) + Pσ(u · ∇u) = Pσ f̃ .
Integrating with respect to time from0 to t, we get

u( . , t)− u( . , 0) +

∫ t

0

Pσ
[
−ν∆u + u · ∇u

]
dτ =

∫ t

0

Pσ f̃ dτ.

Sinceu( . , t) andu( . , 0) are inL2
σ(Ω), they coincide withPσu( . , t) and

Pσu( . , 0), respectively. Hence

Pσ
[
u( . , t)− u( . , 0) +

∫ t

0

[
−ν∆u + u · ∇u

]
dτ
]

= Pσ
∫ t

0

f̃ dτ.

Define forϕ ∈ C∞0 (Ω)

F(ϕ) :=
〈
u( . , t)− u( . , 0) +

∫ t

0

[
−ν∆u + u · ∇u

]
dτ −

∫ t

0

f̃ dτ, ϕ
〉
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F is a distribution inΩ, that vanishes forϕ ∈ C∞0,σ(Ω). Hence, due to
Lemma 5, there exists a distributionP (t) in Ω such that

u( . , t)− u( . , 0) +

∫ t

0

[
−ν∆u + u · ∇u

]
dτ −

∫ t

0

f̃ dτ = −∇P (t).

The left hand side is, in dependence ont, in L∞([0, T ); W−1,2
0 (Ω)). Hence

the right hand side is also inL∞([0, T ); W−1,2
0 (Ω)).

Letφ ∈ C∞0 (QT ). Applying the sides of the equation to∂tφ( . , t), we get∫
Ω

[
u( . , t)− u( . , 0)

]
· ∂tφ( . , t) dx

+

∫ t

0

∫
Ω

[
ν∇u( . , τ ) : ∇∂tφ( . , t) + u( . , τ ) · ∇u( . , τ ) · ∂tφ( . , t)

]
dx dτ

=

∫ t

0

〈
f̃(τ ), ∂tφ( . , t)

〉
dτ −

〈
∇P (t), ∂tφ( . , t)

〉
.

Integrating this equation with respect tot from 0 to T and applying the
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integration by parts, we obtain∫ T

0

∫
Ω

u( . , t) · ∂tφ( . , t) dx dt−
∫ T

0

∫
Ω

[
ν∇u : ∇φ + u · ∇u · φ

]
dx dτ

= −
∫ T

0

〈
f̃ ,φ( . , t)

〉
dτ −

∫ T

0

〈
∇P, ∂tφ

〉
dt

If we denote by
〈〈
. , .
〉〉
QT

the duality between a distribution inQT and a
function fromC∞0 (QT ) then the last term can be written:

. . . = −
〈〈
∇P, ∂tφ

〉〉
Qt

=
〈〈
∇∂tP,φ

〉〉
QT
.

(We identify∇P ∈ L∞(0, T ; W−1,2
0 (Ω)) with a distribution inQT .) The

whole equation can be written in the form〈〈
∂tu− ν∆u + u · ∇u− f̃ , φ

〉〉
QT

= −
〈〈
∇∂tP,φ

〉〉
QT
.

From this, we observe thatu andp ≡ ∂tP satisfy the Navier–Stokes equa-
tion (with the right hand sidẽf ) in the sense of distributions inQT . �
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Remark 3. The weak solutionu can be redefined on a set of measure zero
so that it satisfies∫ t

0

∫
Ω

[
ν∇u : ∇ψ + u · ∇u ·ψ

]
dx dτ −

∫ t

0

〈f ,ψ〉 dτ

= −
∫

Ω

u( . , t) ·ψ dx +

∫
Ω

u0 ·ψ dx (2.9)

for all t ∈ (0, T ) andψ ∈ W1,2
0,σ(Ω). (See [11, Lemma 2.2].) From this,

one can deduce thatu is weakly continuous from[0, T ) to L2
σ(Ω).

One can also prove a reverse statement, i.e. that functionu ∈ L∞
(
0, T ;

L2
σ(Ω)

)
∩L2

(
0, T ; W1,2

0,σ(Ω)
)
, satisfying (2.9) for allψ ∈W1,2

0,σ(Ω) and for
all t ∈ (0, T ), is a weak solution. (See [11, Lemma 2.4].) �

The next Theorem 1 (which is taken from the paper [11]) by G. P. Galdi)
brings a more detailed information on distributionP . Further information
is also provided by the papers [28] (by J. Simon) and [37] (by J. Wolf).

2. A pressure associated with a weak solution to the Navier–Stokes equations. 22 / 88



More on the associated pressure:

Theorem 1. Let f ∈ L2
(
0, T ; W−1,2

0 (Ω)
)

and letu be a weak solution
to the problem (2.1)–(2.4). Then there exists a scalar functionP in QT ,
unique up to an additive function oft, such that

• P ( . , t) ∈ L2
loc(Ω) for all t ∈ [0, T ),

• if Ω′ ⊂ Ω satisfies the cone condition thenP ∈ L∞(0, T ; L2(Ω′)),

• (2.10) holds withP ( . , t) instead of
(∫ t

0 p dτ
)

for all χ ∈ W1,2
0 (Ω)

and all t ∈ [0, T ):∫ t

0

∫
Ω

[
ν∇u : ∇χ + u · ∇u · χ

]
dx dτ −

∫ t

0

〈f ,χ〉 dτ

=

∫
Ω

P ( . , t) divχ dx−
∫

Ω

u( . , t) · χ dx +

∫
Ω

u0 · χ dx.

(2.10)
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Remark 4. If ∂Ω is bounded and satisfies the cone condition thenP can
be chosen so thatP ∈ L∞(0, T ; L2(Ω)).

Remark 5. Assuming thatf ∈ L2(0, T ; W−1,2
0 (Ω)), we can obtain for-

mally (2.10) (withP ( . , t) =
∫ t

0 p( . , τ ) dτ ) from the Navier–Stokes equa-
tion (2.1) if we multiply it by a functionχ ∈ W1,2

0 (Ω) and integrate in
Ω× (0, t).

On the other hand, ifu andP satisfy (2.10) then, considering the distri-
butional derivative of (2.10) with respect tot, one can deduce thatu, ∂tP

satisfy equation (2.1) in the sense of distributions inQT . (The arguments
are analogous to those used in order to show that functionu, satisfying
(2.9) for allψ ∈W1,2

0,σ(Ω) and allt ∈ (0, T ), is a weak solution – see [11,
Lemma 2.4].) �
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Example.

Here, we give an example of a simple weak solution to the system (2.1),
(2.2), that is not smooth in dependence on time and∂tP (x, t) does not
exist as a function. The solution, however, does not satisfy the boundary
condition (2.3).

Let a ∈ C([0, T )) be such a function thaṫa 6∈ L1
loc([0, T )). Let v ∈

W1,2
0,σ(Ω) have the formv = ∇ϕ, whereϕ is a harmonic function inΩ.

Put

u(x, t) := a(t) v(x).

Thenu is a weak solution to the system (2.1), (2.2) with the initial velocity
u0 = a(0) v andf = 0 in Ω× (0, T ).

(It means thatu satisfies (2.5) withu0 = a(0) v and f = 0 for all φ ∈
C∞
(
[0, T ); W1,2

0,σ(Ω)
)

such thatφ( . , T ) = 0.)
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Equation (2.6) takes the form∫ t

0

∫
Ω

[
νa∆ϕ + 1

2a
2ϕ2
]

divχ dx dτ

=

∫
Ω

P ( . , t) divχ dx +
[
a(t)− a(0)

] ∫
Ω

ϕ divχ dx.

It means that

P ( . , t) =

∫ t

0

[
νa∆ϕ + 1

2a
2ϕ2
]

dτ −
[
a(t)− a(0)

]
ϕ in Ω.

As ȧ 6∈ L1
loc([0, T )), ∂tP (which is a pressure associated with the weak

solutionu) exists only as a distribution. �

2. A pressure associated with a weak solution to the Navier–Stokes equations. 26 / 88



Principle of the proof of Theorem 1. (See the proof of Theorem 2.1
in [11].) Ω is expressed: Ω =

⋃∞
k=1 Ωk, whereΩk ⊂ Ωk+1 (for k =

1, 2, . . . ), all Ωk are bounded and satisfy the cone condition. Define for
χ ∈W1,2

0 (Ωk)

F(χ) :=

∫ t

0

(∫
Ωk

[
ν∇u : ∇χ + u · ∇u · χ

]
dx− 〈f ,χ〉

)
dτ

+

∫
Ωk

u( . , t) · χ dx−
∫

Ωk

u0 · χ dx.

F is a linear functional onW1,2
0 (Ωk). It satisfies the estimate

|F(χ)| ≤ c ‖χ‖1,2; Ωk

[∫ t

0

(
‖∇u‖2; Ωk +

√
M ‖∇u‖3/2

2; Ωk
+ ‖f‖−1,2

)
dτ + 2M

]
,

whereM := ess sup
0≤τ≤T

‖u( . , τ )‖2. This shows that functionalF is bounded.

Moreover,
F(χ) = 0 for χ ∈W1,2

0,σ(Ωk) (due to (2.9)).
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Hence, consideringk = 1, there existsP1 ∈ L2(Ω1) such that

∀ χ1 ∈W1,2
0 (Ω1) : F(χ1) =

∫
Ω1

P1 divχ1 dx.

Similarly, consideringk = 2, there existsP2 ∈ L2(Ω2) such that

∀ χ2 ∈W1,2
0 (Ω2) : F(χ2) =

∫
Ω2

P2 divχ2 dx.

Extendingχ1 by zero toΩ2 r Ω1, we haveχ1 ∈W1,2
0 (Ω2). Hence

∀ χ1 ∈W1,2
0 (Ω1) :

∫
Ω1

P1 divχ1 dx =

∫
Ω1

P2 divχ1 dx.

Consequently,P2(x, t) = P1(x, t) + c(t) for x ∈ Ω1. Thus, modifying
appropriatelyP2 by an additive function oft, we getP2(x, t) = P1(x, t)

for x ∈ Ω1.
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Proceeding in the same way, we obtain functionP ( . , t) in Ω such that
P ( . , t) ∈ L2(Ωk) for all k ∈ N and

∀ χk ∈W1,2
0 (Ωk) : F(χk) =

∫
Ωk

P divχk dx.

The norm ofP is

‖P‖2; Ωk = sup
g

∣∣∣∣∫
Ωk

P g dx

∣∣∣∣,
where the supremum is taken over allg ∈ L2(Ωk) such that‖g‖2; Ωk = 1.

Since each such functiong can be expressed in the formg = divχk, where
χk ∈W1,2

0 (Ωk) and‖χk‖1,2; Ωk ≤ ck ‖g‖2; Ωk = ck, we deduce that

‖P‖2; Ωk ≤ ck ‖F‖−1,2; Ωk

≤ ck

∫ t

0

(
‖∇u‖2; Ωk + M 1/2 ‖∇u‖3/2

2; Ωk
+ ‖f‖−1,2

)
dτ + 2M.

�
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On some other results.

• If Ω is any domain inR3 andf = f0 + Div F, wheref0 ∈ L1
loc([0, T );

L2(Ω)), F ∈ L4/3
loc ([0, T ); L2(Ω)3×3) thenP can be chosen so thatP ∈

L
4/3
loc ([0, T ); L2

loc(Ω)). (See H. Sohr [31, Theorem V.1.7.1] (2001).)

• If Ω is bounded then there exists at least one weak solutionu with an
associated pressurep ∈ W−1,∞(0, T ; L2

loc(Ω)). If Ω is locally Lips-
chitzian thenp ∈ W−1,∞(0, T ; L2(Ω)). (See J. Simon [28] (1999).)

• If Ω is a smooth bounded or exterior domain inR3 andu is a weak
solution then, under some assumptions on the smoothness ofu0 andf ,
the associated pressurep is inL5/3(QT ). (See H. Sohr and W. von Wahl
[30] (1986).)
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• If Ω is a smooth bounded or exterior domain or a half–space or the
wholeR3 andf = 0 then the associated pressurep is inLα(ε, T ; Lβ(Ω′))

for 1 < α < 2, 3
2 < β < 3, 2/α + 3/β = 3. (See Taniuchi [35] (1997).)

• If Ω is a smooth domain then a series of authors have shown that the
problem (2.1)–(2.4) has the so calledsuitable weak solution,which is a
pair of functionsu, p such thatu is a weak solution (in the sense of the
previous definition),p is an associated pressure, andu, p satisfy the so
called “generalized energy inequality” (which is also called the “local-
ized energy inequality” or “local energy inequality”). Particularly,

– L. Caffarelli, R. Kohn, L. Nirenberg [5] (1982) obtainedp ∈ L5/4(QT ),
provided thatf ∈ L2(QT ) ∩ Lq

loc(QT ) for someq > 5
2 anddiv f = 0,

– F. Lin [17] (1998) obtainedp ∈ L5/3(Ω), with f = 0.
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• If Ω is any domain inR3 then J. Wolf [37] (2007), consideringf = 0 and
T =∞, proved the existence of a “generalized suitable weak solution”
u, p such thatp = p0 + ∂tp̃h, where p0 ∈ L4/3(0,∞; L2(Ω)) and
p̃h ∈ C(Q∞), ∆p̃h = 0.

More on the paper [28] (1999) by J. Simon.

Assume thatf ∈ L2(0, T ; W−1,2
0 (Ω)).

If u is a weak solution then

∂tu ∈ W−1,∞(0, T ; L2
σ(Ω)),

u · ∇u ∈ L1(0, T ; L4/3(Ω))

∆u ∈ L2(0, T ; W−1,2
0 (Ω)).

This yields ∂tu + u · ∇u− ν∆u− f ∈ W−1,∞(0, T ; W−1,2
0 (Ω)).

2. A pressure associated with a weak solution to the Navier–Stokes equations. 32 / 88



Assume thatΩ is locally Lipschitzian and denote

G(t) :=

∫ t

0

[
∂tu + u · ∇u− ν∆u− f

]
dτ

= u(t)− u0 +

∫ t

0

[
u · ∇u− ν∆u− f

]
dτ.

Obviously, G ∈ L∞(0, T ; W−1,2
0 (Ω)) and G(t) vanishes onW1,2

0,σ(Ω).
Hence, due to Lemma 4, there existsP ∈ L∞(0, T ; L2(Ω)) such that

〈G(t),ϕ〉 =

∫
Ω

P ( . , t) divϕ dx = −〈∇P ( . , t),ϕ〉

for all ϕ ∈W−1,2
0 (Ω). Thus,

∫ t

0

[
∂tu + u · ∇u− ν∆u− f

]
dτ = −∇P .

If Ω is not locally Lipschitzian then a similar consideration can be applied
only locally insideΩ. �
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More on the paper [30] (1986) by H. Sohr and W. von Wahl.

Theorem 3.3 in [30] concerns the caseΩ ⊂ Rn. If n = 3 then it says:

Theorem 2.LetΩ be a smooth bounded domain inR3, T > 0, andu be
a weak solution to the Navier–Stokes problem (2.1)–(2.4).

• Let 3
2 < r < 3, 1 < s < 2, 1 < q < 3

2 with 3 ≤ 2/s + 3/r,
1/q := 1/r + 1

3 ,

• let f ∈ Ls(0, T ; Lq(Ω)) and u0 ∈ D(A
1−1

s+ε
q ) ∩ L2

σ(Ω) for some
ε > 0.

Then we have

• ∂tu, ∆u, u · ∇u ∈ Ls(0, T ; Lq(Ω)),

• there exists an associated pressurep ∈ Ls(0, T ; W 1,q(Ω)).
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Particularly, choosings = r = 5
3, we haveq = 15

14 and

∂tu, ∆u, u · ∇u ∈ L5/3(0, T ; L15/14(Ω)), p ∈ L5/3(0, T ; W 1,15/14(Ω))

provided thatf ∈ L5/3(0, T ; L15/14(Ω)) andu0 ∈ D(A
2
5+ε) ∩W2,2(Ω) for

someε ∈ (0, 3
5).

Applying the imbeddingW 1,15/14(Ω) ↪→ L5/3(Ω), we obtainp ∈ L5/3(0, T ;
L5/3(Ω)).

Principle of the proof. For 1 < a < ∞, letAa be the Stokes operator in
La
σ(Ω), i.e. Aa := −Pa∆ with the domainD(Aa) := W1,a

0,σ(Ω) ∩W2,a(Ω).
(Pa is the Helmholtz projection inLa(Ω).) The imbedding properties yield

‖Aα
av‖a ≤ c ‖Aβ

bv‖b for 1 < b ≤ a <∞, 2α

3
− 1

a
≤ 2β

3
− 1

b
.

SinceAbv = Aav for b ≤ a andv ∈ D(Aa), we further write onlyA
instead ofAa orAb.
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Consider the test function in (2.5) in the formφ(x, t) = w(x)h(t), where
w ∈ D(A3/4) ∩C∞0 (Ω) andh ∈ C1([0, T ]), h(T ) = 0.

w = A−3/4A3/4w = A−3/4w̃, wherew̃ := A3/4w

. . . φ(x, t) = A−3/4w̃(x)h(t)

The integral equation (2.5) takes the form

−
∫ T

0

(u, A−3/4w̃) ḣ dt + ν

∫ T

0

(∇u,∇A−3/4w̃)h dt

+

∫ T

0

(u · ∇u, A−3/4w̃) dt = (u0, A
−3/4w̃)h(0) +

∫ T

0

(f , A−3/4w̃)h dt.

One can show thatu · ∇u ∈ Lr(QT ) for 1 < r ≤ 5
4. From this, one

can deduce thatA−3/4Pr(u · ∇u) ∈ L2(QT ). Similarly, ∆A−3/4u ∈
L2(QT ), which means thatP2∆A−3/4u ∈ L2(QT ). Moreover,A−3/4Pqf ∈
Ls(0, T ; L2(Ω)).
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Thus, the integral equation can be rewritten:

−
∫ T

0

(u, A−3/4w̃) ḣ dt− ν
∫ T

0

(A−3/4P2∆u, w̃)h dt

+

∫ T

0

(
A−3/4Pr(u · ∇u), w̃

)
dt

= (A−3/4u0, w̃)h(0) +

∫ T

0

(A−3/4Pqf , w̃)h dt.

Considering at first functionsh such thath(0) = 0, we observe that
d

dt
(A−3/4u, w̃)− ν (P2∆A−3/4u, w̃) +

(
A−3/4Pr(u · ∇u), w̃

)
= (A−3/4Pqf , w̃)

a.e. in(0, T ). Furthermore, considering all “admissible” functionsh, we
obtain

(A−3/4u(0), w̃) = (A−3/4u0, w̃).
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Since
d

dt
(A−3/4u, w̃) =

(
∂t(A

−3/4u), w̃
)
,

we also get

∂t(A
−3/4u)− ν P2∆A−3/4u + A−3/4Pr(u · ∇u) = A−3/4Pqf

(equation inLσ(Ω)) for a.a.t ∈ (0, T ). From this, we get∂t(A−3/4u) ∈
Lγ(0, T ; L2(Ω)) for γ := min{s; 2}.

ConsideringJk := (I + k−1A)−3/4 instead ofA−3/4, we obtain

∂t Jku− νP2∆Jku + JkPr(u · ∇u) = JkPqf . (2.11)

This is the “regularized” Navier–Stokes equation.

The inclusionu · ∇u ∈ Ls(0, T ; Lq(Ω)) follows from the definition of the
weak solution, particularly fromu ∈ L2(0, T ; W1,2

0,σ(Ω))∩L∞(0, T ; L2
σ(Ω)).
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Thus, (2.11) can be treated as a linear equation

∂t Jku− νPq∆Jku = Jk
(
Pqf − Pq(u · ∇u)

)
. (2.12)

(Sinceq < 2 andq < r, we may writePq∆Jku instead ofPq∆Jku and
Pq(u · ∇u instead ofPr(u · ∇u.)

Applying estimates which hold for this linear equation, we obtain∫ T

0

(
‖∂t(Jku)‖sq + ‖Jku‖s2,q

)
dt

≤ c ‖A1−1
s+εJku0‖sq + c

∫ T

0

∥∥JkPq(f − u · ∇u)
∥∥s
q

dt.

The right hand side is ≤ c ‖A1−1
s+εu0‖sq + c

∫ T

0

∥∥Pq(f − u · ∇u)
∥∥s
q

dt.

Thus, considering the limit fork → ∞ in the left hand side, we get∂tu,
∆u ∈ Ls(0, T ; Lq(Ω)).
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The same procedure in (2.12) yields

∂tu = νPq∆u + Pq(f − u · ∇u).

Since

ν∆u + Pq(f − u · ∇u) = Pq
(
ν∆u + f − u · ∇u

)
+∇p,

where∇p is uniquely determined, we obtain the equation

∂tu = −∇p + ν∆u + f − u · ∇u (2.13)

in Ls(0, T ; Lq(Ω)). �

More on the paper [37] (2008) by J. Wolf.

Functionu satisfies formally the N-S equation (2.1) (withf = 0 andp =

p0 + ∂tp̃h, wherep̃h is harmonic) if and only ifv := u +∇p̃h satisfies

∂tv + u · ∇u +∇p0 = ν∆v. (2.14)

2. A pressure associated with a weak solution to the Navier–Stokes equations. 40 / 88



Multiplying this equation byϕ ∈ C∞0 (Q∞) and integrating by parts, we
get∫

Q∞

[
−v · ∂tϕ + u · ∇u + ν∇v : ∇ϕ

]
dx dt =

∫
Q∞

p0 divϕ dx dt.

(2.15)

On the other hand, ifv satisfies (2.15) for allϕ ∈ C∞0 (Q∞) then function
u in L∞(0, T ; L2

σ(Ω)) ∩ L2(0,∞; W0,σ(Ω)) that differs fromv at most
by a gradient of a harmonic function, is a weak solution to the Navier–
Stokes problem (2.1)–(2.4). If the differencev−u is denoted by∇p̃h then
p0 + ∂tp̃h is a pressure associated with the weak solutionu.

Using the representatioñp := p0 + 1
2|u|

2 and u ·∇u = 1
2|u|

2 +curl u×u,
we can rewrite equation (2.14):

∂tv + curl u× u +∇p̃ = ν∆v. (2.16)
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Let u ∈ L∞(0, T ; L2
σ(Ω)) ∩ L2(0,∞; W1,2

0,σ(Ω)) be a weak solution to the
Navier–Stokes problem (2.1)–(2.4). Thenu is said to be asuitable weak
solutionif

• there existsp0 ∈ L4/3(0,∞; L2(Ω)) andp̃h ∈ C(Q∞) such that∆p̃h = 0,

• functionv satisfies (2.15) for allϕ ∈ C∞0 (Q∞),

• and thelocal energy inequality∫
Ω

|v( . , t)|2 φ( . , t) dx + 2ν

∫ t

0

∫
Ω

|∇v|2 φ dx dt

≤
∫ t

0

∫
Ω

|v|2 (∂tφ + ν∆φ) dx dt−
∫ t

0

∫
Ω

(∇p̃h × curl v) · φv dx dt

+

∫ t

0

∫
Ω

p̃v · ∇φ dx dt (2.17)

for each nonnegative functionφ ∈ C∞0 (Q∞).
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Inequality (2.17) can be formally obtained from (2.16) if one uses the for-
mulau = v +∇p̃h, multiples (2.16) byφv and integrates inQ∞.

Theorem 1.3 in Wolf’s paper [37] says:

Theorem 3.For all u0 ∈ L2
σ(Ω), a suitable weak solution of the Navier–

Stokes problem (2.1)–(2.4) (in the sense of the previous definition) exists.

Here, we restrict ourselves only to the question of existence of an appro-
priate pressure, associated to a weak solutionu of the problem (2.1)–(2.4).

LetG be a domain inR3,G ⊂ Ω. LetW 2,2
0 (G) be the closure ofC∞0 (G) in

the norm‖∆ . ‖2. Define

A2(G) := {∆u ∈ L2(G); u ∈ W 2,2
0 (G)},

B2(G) := {p ∈ L2(G); ∆p = 0 in G}.
Then L2(G) = A2(G)⊕B2(G) (by Weyl’s lemma).
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Lemma 7. If v∗ ∈W−1,2
0 (Ω) andp0 ∈ A2(G) are such that

〈v∗,∇φ〉 =

∫
G

p0 ∆φ dx for all φ ∈ C∞0 (G) (2.18)

then ‖p0‖2;G ≤ ‖v∗‖−1,2; Ω.

Proof. (2.18) means that∆p0 = div v∗ in the sense of distributions inG.

‖v∗‖−1,2; Ω = sup
ϕ∈W

1,2
0 (Ω); ϕ 6≡0

|〈v∗,ϕ〉|
‖ϕ‖1,2; Ω

≥ sup
ϕ∈W

1,2
0 (G); ϕ 6≡0

|〈v∗,ϕ〉|
‖ϕ‖1,2;G

≥ sup
ϕ=∇φ; φ6≡0; φ∈C∞0 (G)

|〈v∗,∇φ〉|
‖∇φ‖1,2; Ω

≥ c sup
ϕ=∇φ; φ6≡0; φ∈C∞0 (G)

|〈v∗,∇φ〉|
‖∆φ‖2;G
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≥ c sup
ϕ=∇φ; φ6≡0; φ∈C∞0 (G); g∈B2(G)

∣∣∫
Ω p0 (∆φ + g) dx

∣∣
‖∆φ + g‖1,2;G

= c sup
f∈L2(G)

∣∣∫
Ω p0 f dx

∣∣
‖f‖2;G

= c ‖p0‖2;G.

If we considerW1,2
0 (Ω) andW 2,2

0 (Ω) with the equivalent norms‖∇ϕ‖2

and‖∆φ‖2, respectively, thenc = 1. �

Lemma 8. (= Theorem 2.2 in [37])Let u ∈ Cw([0,∞); L2
σ(Ω)) and

h ∈ L1
loc([0,∞); L2(Ω)3×3) satisfy∫

Q∞

[
−u · ∂tϕ + h : ∇ϕ

]
dx dt = 0 (2.19)

for all ϕ ∈ C∞0 (Q∞) such thatdivϕ = 0. LetB ⊂⊂ Ω.
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Then there exist functionsp0 ∈ L1
loc([0,∞); A2(Ω)) and p̃h ∈ C(Ω ×

[0,∞)) such that∆p̃h = 0, (p̃h)B = 0 (i.e. the mean value of̃ph in B is
zero) and∫

Q∞

[
−u · ∂tϕ + h : ∇ϕ

]
dx dt

=

∫
Q∞

[
p0 divϕ +∇p̃h · ∂tϕ

]
dx dt +

∫
Ω

u( . , 0) ·ϕ( . , 0) dx (2.20)

for all ϕ ∈ C∞(Q∞) with suppϕ ⊂⊂ Ω× [0,∞).
Moreover,‖p0( . , t)‖2; Ω ≤ ‖h( . , t)‖2; Ω for a.a.t ∈ [0,∞), and for each
Lipschitzian domainG ⊂⊂ Ω there exists a constantcG such that

‖p̃h( . , t)‖2;G ≤ cG

(
‖u( . , t)− u( . , 0)‖2;G +

∥∥∥∥∫ t

0

h( . , s) ds

∥∥∥∥
2; Ω

)
for a.a.t ∈ [0,∞).
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Roughly speaking, Lemma 8 says that ifu ∈ Cw([0,∞); L2
σ(Ω)) andh ∈

L1
loc([0,∞); L2(Ω)3×3) satisfy the equation

u′ = Pσ(div h) (2.21)

as an equation inW−1,2
0,σ (Ω), satisfied a.e. in(0,∞), then there exist appro-

priate functionsp0 andp̃h (p̃h harmonic) such that the equation

∂tu = −∇p + div h (2.22)

holds in the sense of distributions inQ∞ with p = p0 + ∂tp̃h.
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The proof essentially uses the next Lemma 9, which, again roughly speak-
ing, says that ifU ∈ L2

σ(Ω) andv∗ ∈W−1,2
0 (Ω) are such that

U + Pσv∗ = 0

(an equation inW−1,2
0,σ (Ω)) then there exist unique appropriate functions

p0 ∈ A2(Ω) andph ∈ C∞(Ω) with ∆ph = 0, (ph)B = 0 (whereB is any
domain⊂⊂ Ω) such

U + v∗ = −∇p

(an equation inW−1,2
0 (Ω)) with p = p0 + ph.
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Lemma 9. Let B ⊂⊂ Ω be an arbitrary domain and letU ∈ L2
σ(Ω)

and v∗ ∈W−1,2
0 (Ω) satisfy∫

Ω

U ·ϕ dx + 〈v∗,ϕ〉 = 0 (2.23)

for all ϕ ∈ C∞0,σ(Ω). Then there exist unique functionsp0 ∈ A2(Ω) and
ph ∈ C∞(Ω) with ∆ph = 0 and(ph)B = 0, such that∫

Ω

U ·ϕ dx + 〈v∗,ϕ〉 =

∫
Ω

(p0 + ph) divϕ dx (2.24)

for all ϕ ∈ C∞0 (Ω). Moreover, ‖p0‖2 ≤ ‖v∗‖−1,2 and for each
Lipschitzian domainG ⊂⊂ Ω there exists a constantcG such that
‖p0‖2 ≤ cG

(
‖U‖2 + ‖v∗‖−1,2

)
.
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Principle of the proof of Lemma 9. Let Ω1 ⊂ Ω2 ⊂ . . . be a sequence of
bounded Lipschitzian domains such thatΩ =

⋃∞
k=1 Ωk. Fork ∈ N, define

〈w∗k,ϕ〉 :=

∫
Ωk

U ·ϕ dx + 〈v∗,ϕ〉 for ϕ ∈W1,2
0 (Ωk).

Clearly,w∗k vanishes onW1,2
0,σ(Ωk). Hence there existspk ∈ L2(Ωk) such

that

〈w∗k,ϕ〉 =

∫
Ωk

pk divϕ dx for all ϕ ∈W1,2
0 (Ωk).

Moreover, there exist uniquep0k ∈ A2(Ωk) andphk ∈ B2(Ωk) such that
pk = p0k + phk.

Finally, extendingp0k andphk by zero toΩrΩk and considering the limits
for k →∞, one obtains functionsp0 andph. �
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Principle of the proof of Lemma 8. Applying (2.21) toψ ∈ C∞0,σ(Ω) and
integrating with respect to time from0 to t, we obtain∫

Ω

[
u( . , t)− u( . , 0)

]
·ψ dx = −

∫ t

0

〈
Pσ(div h),ψ

〉
σ

dt

=

∫ t

0

〈div h,ψ〉 dt = −
∫ t

0

∫
Ω

h : ∇ψ dx dt

= −
∫

Ω

h̃( . , t) : ∇ψ dx,

where h̃( . , t) :=
∫ t

0 h( . , τ ) dτ . Due to Lemma 9, there exist unique
functionsp̃0( . , t) ∈ A2(Ω) andp̃h( . , t) ∈ B2(Ω) such that∀ ψ ∈ C∞0 (Ω):∫

Ω

[
u( . , t)− u( . , 0)

]
·ψ dx +

∫
Ω

h̃( . , t) : ∇ψ dx

=

∫
Ω

[
p̃0(t) + p̃h(t)

]
divψ dx = −

〈
∇p̃0 +∇p̃h, ψ

〉
. (2.25)
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Particularly, consideringψ in the formψ = ∇φ for someφ ∈ C∞0 (Ω), we
get ∫

Ω

h̃( . , t) : ∇2φ dx =

∫
Ω

p̃0( . , t) ∆φ dx.

From this, one can deduce that

‖p̃0( . , s)− p̃0( . , t)‖2 ≤ ‖h̃( . , s)− h̃( . , t)‖2 ≤
∫ t

s

‖h(τ )‖2 dτ

for 0 ≤ t ≤ s < ∞. Furthermore, p̃0 ∈ C([0,∞); L2(Ω)) and p0 :=

∂tp̃0 ∈ L1
loc([0,∞); L2(Ω)).

Consideringψ in (2.25) in the formψ = ∂tϕ( . , t), whereϕ ∈ C∞0 (Q∞),
and integrating over[0,∞), we get (2.20). For more details (including the
information that̃ph ∈ C(Ω× [0,∞))), see [37]. �
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Existence of a pressurewith the properties stated in Wolf’s definition of
a suitable weak solution:

Consider the Navier–Stokes equation in the form (2.8) withf = 0, i.e.

u′ − νPσ(∆u) + Pσ(u · ∇u) = 0.

It corresponds to equation (2.21). Due to Lemma 8, there existsp such that
p = p0 + ∂tp̃h, wherep0 andp̃h have the properties stated in Lemma 8, and
u andp satisfy the Navier–Stokes equation in the sense of distributions in
QT . �
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3. An interior regularity of pressure under Serrin’s conditions
and relation to the boundary conditions.

In this section, we assume for simplicity thatf = 0. Thus, the considered
Navier–Stokes system is

∂tu + u · ∇u +∇p = ν∆u, (3.1)

div u = 0. (3.2)

If Ω′ is a domain inR3 and−∞ < t1 < t2 < ∞ thenu ∈ is said to be
a weak solution to the system (2.1), (2.2) inΩ′ × (t1, t2) (with f = 0) if it
satisfies∫ T

0

∫
Ω

[
−u · ∂tφ + ν∇u : ∇φ + u · ∇u · φ

]
dx dt = 0

for all φ ∈ C∞0
(
Ω′ × (t1, t2)

)
such thatφ( . , T ) = 0 such thatdivφ = 0.
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The next lemma on the interior regularity concerns the weak solution to
the Navier–Stokes system (2.1), (2.2) inΩ′ × (t1, t2) ⊂ Ω × (0, T ). (See
J. Serrin [26].)

Lemma 10.LetΩ′ be a domain inR3 and letu be a weak solution to the
Navier–Stokes system (2.1), (2.2) inΩ′×(t1, t2). Suppose thatu satisfies
Serrin’s condition

• u ∈ Lr(t1, t2; Ls(Ω′)) for somer, s ∈ R such that2/r + 3/s = 1,
s > 3.

Thenu with all its space derivatives is bounded on every compact subset
of Ω′ × (t1, t2).

Moreover, if∂tu ∈ L2(t1, t2; Lq(Ω′)) for someq ≥ 1 thenu and each its
space derivative are absolutely continuous functions of time.
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A similar statement can also be proven ifΩ′ is bounded andu ∈ L∞(t1, t2;
L3(Ω′)) with the norm ofu in this space “sufficiently small”.

Typically, the lemma provides information on the regularity ofu in Ω′′ ×
(t1 + ξ, t2 − ξ), whereΩ′′ ⊂⊂ Ω′ andt1 < t1 + ξ < t2 − ξ < t2. It implies
that u is in C∞(Ω′′) at each timet ∈ (t1 + ξ, t2 − ξ). However,it does
not say anything about the regularity ofu in the direction oft and it says
nothing about the associated pressure.

On interior regularity of ∂tv and p.

Theorem 4. Let Ω be a bounded or exterior domain with a smooth
boundary, or a half–space. Letu be a weak solution to the Navier–
Stokes problem (2.1)–(2.4), satisfying the assumptions of Lemma 10.
Then∂tv andp have all spatial derivatives inLα(t1 +ξ, t2−ξ; L∞(Ω′′))

for eachα ∈ [1, 2), whereΩ′′ ⊂⊂ Ω′ is a bounded domain.
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The theorem is essentially due to J.N. and P. Penel [19] (2001) and Z. Skalák,
P. Kǔcera [29] (2003).

Principle of the proof. Due to [35], the associated pressurep is inLα(t1 +

ξ, t2 − ξ; Lβ(Ω)) for all 1 < α < 2, 3
2 < β < 3, 2/α + 3/β = 3. Applying

the operator div to the Navier–Stokes equation, we obtain the equation

∆p = −∂iuj ∂jui, (3.3)

satisfied inΩ in the sense of distributions at all timest ∈ (t1 + ξ, t2 − ξ).
Since the right hand side is “smooth” inΩ′ (due to Lemma 10),p is also
“smooth” in Ω′.
Let δ > 0 be so small thatU4δ(Ω

′′) ⊂ Ω′. Denote byψ an infinitely
differentiable cut–off function defined inR3 such that0 ≤ ψ ≤ 1 and

ψ =

{
1 onUδ(Ω′′),
0 onR3

r U3δ(Ω
′′).
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The productψ p satisfies

ψ(x) p(x, t) = − 1

4π

∫
R

3

1

|x− y|
[

∆(ψp)
]
(y, t) dy. (3.4)

Using equation (3.3), we get

∆(ψp) = (∆ψ)p + 2∇ψ · ∇p− ψ ∂i∂j(uiuj).

Substituting this to (3.4) and applying integration by parts, we get (for
x ∈ Ω′′):

ψ(x) p(x, t) = pI(x, t) + pII(x, t)

where

pI(x, t) =
1

4π

∫
R

3

1

|x− y|
[
ψ ∂iuj ∂jui

]
(y, t) dy,
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pII(x, t) =
1

4π

∫
R

3

1

|x− y|
[
p∆ψ

]
(y, t)

+
1

2π

∫
R

3

x− y

|x− y|3
·
[
∇ψ p

]
(y, t) dy

=
1

4π

∫
R

3

(
∆ψ(y)

|x− y|
+ 2

x− y

|x− y|3
· ∇ψ(y)

)
p(y, t) dy.

u and its spatial derivatives are bounded onsuppψ× (t1 + ξ, t2− ξ), hence∣∣∇kpI(x, t)
∣∣ ≡ ∣∣∇k

x p
I(x, t)

∣∣ =

∣∣∣∣ 1

4π

∫
R

3

1

|x− y|
[
∇k

y

(
ψ ∂iuj ∂jui

)]
(y, t) dy

∣∣∣∣
≤ c(k).

The first two integrals in the expression ofpII can be estimated in the same
way.
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The integrand in the last integral the representation ofpII is supported
only for y ∈ U3δ(Ω

′′) r Uδ(Ω
′′), where|x − y| > δ. Hence the modulus

of any spatial derivative of this integral (i.e. the derivative with respect to
components ofx) is

≤
∫ t2

t1

∣∣∣∣∫
R

3

(
. . .
)
p(y, t) dy

∣∣∣∣α dt ≤ c(k)

∫ t2

t1

(∫
supp∇ψ

|p(y, t)| dy

)α
dt

≤ c(k)

∫ t2

t1

(∫
Uδ(Ω

′′)
|p(y, t)|β dy

)α/β
dt,

whereβ is chosen so that2/α + 3/β = 3. Due to [35], p ∈ Lα(t1, t2;
Lβ(Uδ(Ω

′)) for 1 < α < 2, 3
2 < β < 3 such that2/α + 3/β = 3. Hence

the last integral is finite. �

Remark 6. The assumptions on the smoothness of∂Ω are needed when
we apply [35].
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Remark 7. The information on the rate of integrability ofp and∂tu in
time can be improved if∂Ω = ∅, i.e.Ω = R3. In this case,∂tv andp have
all spatial derivatives inL∞(t1 + δ, t2 − δ; L∞(Ω′′)). (See Z. Skaĺak and
P. Kǔcera [29] (2003) and J.N. [20] (2003).)

A similar result can also be obtained ifu is assumed to satisfy the so called
Navier–type boundary conditions, i.e.

u · n = 0

curl u× n = 0

on ΓT (= ∂Ω× (0, T )).
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4. An influence of pressure on the regularity of a weak solution.
Regularity criteria in terms of pressure.

Most of the authors considerf = 0. Many results are formulated forΩ ⊂
R
n. However, here we consider onlyn = 3.

• S. Kaniel [14] (1969) assumed thatu is a Leray–Hopf weak solution
to the Navier–Stokes problem (withf = 0) in Ω× (0, T ), whereΩ is a
bounded domain inR3, andp is an associated pressure. He proved that
the conditionp ∈ L∞(0, T ; Lq(Ω)), q > 12

5 guarantees that solutionu
is regular.

• The result was later improved by L. Berselli [2] (1999), who proved
that if p ∈ Lα(0, T ; L3α/(α+1)(Ω)) for someα > 3 thenu is regular.
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• For other improvements (using the weakLγ–space overQT ) see
H. Beirão da Veiga [1] (1998).

• D. Chae and J. Lee [7] (2001): the Navier–Stokes problem withf =

0 in R3 × (0, T ). They showed that ifu0 ∈ L2
σ(R3) ∩ Lq(R3) for

someq > 3, u is the Leray–Hopf weak solution in(0, T ) and p is
in Lr(0, T ; Ls(R3)) for some1 < r ≤ ∞, 3

2 < s < ∞, satisfying
2/r + 3/s < 2, or p ∈ L1(0, T ; L∞(R3)), or if p ∈ L∞(0, T ; L3/2(R3))

(with the corresponding norm sufficiently small) thenu is a regular so-
lution.

• L. Berselli and G. P. Galdi [3] (2002) extended the previous result to
the case2/r + 3/s = 2 (with 1 ≤ r < ∞). They also considered the
analogous condition on∇p with 2/r + 3/s = 3, 1 ≤ r ≤ 3.
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• G. Seregin and V.̌Sveŕak [25] (2002) considered a suitable weak solu-
tion u, p in R3 × (0, T ).

The authors say that a scalar functiong : R3×(0,∞)→ [0,∞) satisfies
condition (C)if to any t0 > 0 there existsR0 > 0 such that

A(t0) := sup
x0∈R3

sup
t0−R2

0≤t≤t0

∫
|x−x0|<R0

g(x, t)

|x− x0|
dx < ∞

and for each fixedx0 ∈ R3 and each fixedR ∈ (0, R0] the function

t 7→
∫
|x−x0|<R

g(x, t)

|x− x0|
dx

is continuous att0 from the left.
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The main result of [25] says that if there exists functiong satisfying
condition (C) so that the normalized pressure

p(x, t) :=
1

4π

∫
R

3

1

|x− y|
[∂iuj ∂jui](y, t) dy

satisfies

|u(x, t)|2 + 2p(x, t) ≤ g(x, t) for all x ∈ R3, 0 < t <∞ (4.1)

or

p(x, t) ≥ −g(x, t) for all x ∈ R3, 0 < t <∞ (4.2)

thenu is regular inR3 × (0,∞).
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• J. Něcas and J. Neustupa [18] (2002) proved the regularity of a suitable
weak solutionu, p at the space–time point(x0, t0) under the conditions
that there existr > 0 (arbitrarily small) andρ > 0 (arbitrarily large)
such that

◦ the negative partp− of the pressure is integrable with exponentsα ∈
[3
2,∞) (in time) andβ ∈ (3

2,∞) (in space), such that2/α+3/β = 2,
over

V ρ
r :=

{
(x, t) ∈ QT ; t0 − r2/ρ2 < t < t0, |x− x0| < ε(t)ρ

}
whereε(t) :=

√
t0 − t,

◦ the velocity is integrable with the exponentsa (in time) andb (in
space) such thata ∈ [3,∞), β ∈ (3,∞), such that2/a + 3/b = 1,
over

Uρ
r :=

{
(x, t) ∈ QT ; t0 − r2/ρ2 < t < t0, ε(t)ρ < |x− x0| < r

}
.
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• K. Kang, J. Lee [12] (2006) and [13] (2010): considered a smooth
bounded domainΩ ⊂ R3 and the initial velocityu0 in L2

σ(Ω) ∩ L3(Ω).
They assumed thatu is a weak solution with an associated pressurep,
and they proved regularity ofu provided that

p ∈ Lr(0, T ; Ls(Ω)) with 2/r + 3/s ≤ 2, 3
2 < s ≤ ∞,

or ∇p ∈ Lr(0, T ; Ls(Ω)) with 2/r + 3/s ≤ 3, 1 < s ≤ ∞.

• Y. Zhou [38, 39] (2006): technical improvements of the results from
[3] . . . ∇p is supposed to be inLr(0, T ; Ls(R3)) with 2/r + 3/s = 3,
1 < s <∞, 2

3 < r <∞.

• J. Fan, S. Jiang and G. Ni [9] (2008): consideredΩ = R
3, obtained

results in Morrey and Besov spaces.
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• Z. Cai, J. Fan and J. Zhai [6] (2010) proved the regularity of a Leray–
Hopf weak solutionu (with an associated pressurep) if one of the con-
ditions holds

◦ p ∈ Lr(0, T ; Ls,∞(R3)) with 2/r + 3/s = 2, 1 ≤ r <∞,

◦ p ∈ L∞(0, T ; L3/2,∞(R3)) with the corresponding norm “suffi-
ciently small”,

◦ ∇p ∈ Lr(0, T ; Ls,∞(R3)) with 2/r + 3/s = 3, 2
3 < s < ∞, 1 <

r <∞,

◦ ∇p ∈ L2/3(0, T ; L∞,∞(R3)) with the corresponding norm “suffi-
ciently small”.
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• S. Suzuki [34] (2012) considered a bounded smooth domainΩ and the
initial velocity in W1,2

0,σ(Ω) ∩ L∞(Ω). She proved the regularity of an
existing weak solutionu if an associated pressurep is in the Lorentz
spaceLr,∞(0, T ; Lq,∞(Ω)) with the corresponding norm “sufficiently
small”, where

2

r
+

3

q
= 2,

5

2
≤ q ≤ 3, 2 ≤ r ≤ 5

2
,

or, alternatively, if∇p is inLr,∞(0, T ; Lq,∞(Ω)) with the corresponding
norm “sufficiently small”, where

2

r
+

3

q
= 3,

5

2
≤ q < 3, 1 ≤ r ≤ 5

3
.
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• S. Bosia, M. Conti and V. Pata [4] (2014) considered eitherΩ bounded
or Ω = R3, and a Leray–Hopf weak solutionu. They proved the regu-
larity criterion, saying that the identity

lim inf
ε→0

ε3/2
∫ Tε

0

‖∇p( . , t)‖r(1−ε)s dt = 0,

whereTε := T − e−1/ε, ε > 0, and2/r + 3/s = 3, 1 < s ≤ 3, implies
that solutionu is regular inQT .
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More on the paper [3] (2002) by L. Berselli and G. P. Galdi.

The results and proofs are formulated forΩ = R
n. However, here we

consider only the casen = 3.

The advantage of the whole spaceΩ = R3: one can use the inequality

‖p‖q ≤ c ‖u‖2
2q for 1 < q <∞, (4.3)

obtained from the equations∆p = −∂i∂j(uiuj) by means of the Calderon–
Zygmund inequality.

The initial velocity is assumed to be inL2
σ(R3)∩L3(Ω). This guarantees the

existence of a “strong” solution on some time interval(0, T0). The authors
show that, under some conditions onp, one hasT0 = T .

Multiplying the Navier–Stokes equation (2.1) (withf = 0) by |u|u and
integrating inR3, one gets
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1

3

d

dt
‖u‖3

3 + ν

∫
R

3
|u||∇u|2 dx +

4ν

9

∥∥∇|u|3/2∥∥2

2

≤ 2

3

∫
R

3
|p| |u|1/2

∣∣∇|u|3/2∣∣ dx. (4.4)

Applying (4.3), interpolation inequalities and the Young inequality, the
authors estimate the right hand side from above by something that can
be absorbed by the left hand side + something that is integrable with re-
spect tot on (0, T ) times‖u‖3

3. Then, from Gronwall’s inequality, one gets
u ∈ L∞(0, T ; L3(R3), and especially

∇|u|3/2 ∈ L2(0, T ; L2(R3) =⇒ |u|3/2 ∈ L2(0, T ; L6(R3))

=⇒ u ∈ L3(0, T ; L9(R3)),

which is the class of regularity.
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Recall thatp is supposed to be inLr(0, T ; Ls(R3)) for r, s, satisfying cer-
tain conditions. Since (4.3) is not needed if9

4 ≤ s < 3, the results hold, for
theses, also in a half–space or in a smooth bounded domainΩ in R3 or in
a smooth exterior domainΩ in R3.

Finally, the authors show that ifΩ = R3 or Ω is any of the domains named
above and if∇p ∈ Lr(0, T ; Ls(Ω)) for somer, s such that2/r + 3/s = 3,
9
7 ≤ s ≤ 3, thenu is regular. This generalizes previous results from
[22]. The trick is that the right hand side of (4.4) is treated in the form∫

Ω∇p · u|u| dx and is not modified by the integration by parts. �
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More on the papers [12, 13] (2006, 2010) by K. Kang and J. Lee.

The authors, in addition to inequality (4.4), also multiplied the Navier–
Stokes equation byu |u|2. By analogy with (4.4), they obtained

1

4

d

dt
‖u‖4

4 + ν

∫
R

3
|u|2|∇u|2 du ≤ c

∫
Ω

|p| |∇u| |u|2 dx.

In the cases > 3, the right hand side is

≤ c ‖∇u‖2 ‖p‖s
∥∥|u|2∥∥

2s/(s−2)
≤ c ‖∇u‖2 ‖p‖s ‖u‖2

4s/(s−2) ≤ . . . .

Finally, applying interpolation inequalities, Young’s inequality, imbedding
inequalities and Gronwall’s inequality, the authors estimatedu in L∞(ε, T ;
L4(Ω)) (for anyε > 0), which is the class of regularity.

This procedure enabled the authors to avoid inequality (4.3), obtained by
means of the Calderon–Zygmund theorem. �
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More on the paper [25] (2002) by G. Seregin and V.̌Sverák.

The authors fix a representative ofu such that

lim inf
t→t0

‖u( . , t)‖2 ≥ ‖u( . , t0)‖2 for all 0 < t0 < T

andu is weakly continuous from(0, T ) to L2
σ(R3). They prove the two

lemmas (= Lemma 3.2 and Lemma 3.3 in [25]):

Lemma 11.GivenΩ0 ⊂⊂ Ω, 0 < t0 ≤ T and0 < δ0 <
√
t0. If

a(Ω0, t0, δ0) := sup
{ 1

R
‖u( . , t)‖2;BR(x0); x0 ∈ Ω0, t ∈ [t0 − δ2

0, t0],

0 < R ≤ d0 :=
1

2
dist(∂Ω,Ω0)

}
< ∞

then lim
t→t0−

‖u( . , t)− u( . , t0)‖2; Ω0 = 0.
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Lemma 12. Let u, p be a suitable weak solution to the Navier–Stokes
problem inQT ≡ R3× (0, T ) andf ∈M2,γ(QT ) (the Morrey space) for
someγ > 0. There existsε∗ > 0 (depending only onγ) such that if for
someR∗ > 0,Q(z0, R∗) ⊂ QT and

sup
0<R<R∗

sup
t0−R2≤t≤t0

1

R
‖u( . , t)‖2

BR(x0) < ε∗ (4.5)

thenz0 is a regular point of solutionu.

Here,z0 ≡ (x0, t0) andQ(z0, R) ≡ BR(x0)× (t0 −R2, t0).

The principle idea of the proof is to show that (4.5) implies that
1

ρ2

∫
Q(z0,ρ

(
|u|3 + |p|3/2

)
dx dt ≤ c ε∗

(wherec is independent ofρ) for all ρ sufficiently small.
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The authors prove the identities∫
BR(x0)

1

|y − x0|
(
2p(y, t) + |ûx0(y, t)|2

)
dy

=

∫
BR(x0)

1

R

(
3p(y, t) + |u(y, t)|2

)
dy

= R2

∫
R

3
rBR(x0)

∇2
y

( 1

|y − x0|

)
:
[
u(y, t)⊗ u(y, t)

]
dy, (4.6)

where

ûx0(y, t) := u(y, t)− [u(y, t) · (y − x0)] (y − x0)

|y − x0|2
.

Assume thatt0 is the first instant of time when a singularity appears.
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For 0 < t < t0, applying energy estimates, Hölder’s inequality and esti-
mates of singular integrals following from the Calderon–Zygmund theory,
the authors derive

lim
R→∞

sup
0≤t<t0

∫
R

3
rBR(0)

|u(x, t)|2 dx = 0.

Since lim inf
t→t0−

∫
R

3
rBR(0)

|u(y, t)|2 dx ≥
∫
R

3
rBR(0)

|u(x, t0)|2 dx,

we get

lim
R→∞

sup
0≤t≤t0

∫
R

3
rBR(0)

|u(x, t)|2 dx = 0. (4.7)

Further, the authors use identities (4.6), Lemma 11 and either condition
(4.3) or condition (4.4) and prove that for anyρ > 0

lim
t→t0−

‖u( . , t)− u( . , t0)‖2;Bρ(x0) = 0.
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From this and (4.7), they deduce that

lim
t→t0−

‖u( . , t)− u( . , t0)‖2 = 0. (4.8)

(Recall that‖ . ‖2 = ‖ . ‖2; Ω, which is now‖ . ‖2;R3.)

As an intermediate result, using identities (4.6) and condition (4.3), the
authors derive the inequality

1

2R
‖u( . , t)‖2;BR(x0) ≤

1

2

∫
BR(x0)

g(x, t)

|x− x0|
dx +

∫
BR(x0)

|ũx0(x, t0)|2

|x− x0|
dx

≤
∫
BR(x0)

1

|x− x0|
[
g(x, t)−

(
|u(x, t)|2 + 2p(x, t)

)]
dx, (4.9)

where

ũx0(x, t) :=
[u(y, t) · (y − x0)] (y − x0)

|y − x0|2
.
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Let ε∗ be the number from Lemma 12. There existsR∗ > 0 such that

1

2

∫
BR∗(x0)

g(x, t0)

|x− x0|
dx +

∫
BR∗(x0)

|ũx0(x, t0)|2

|x− x0|
dx

+

∫
BR∗(x0)

1

|x− x0|
[
g(x, t0)−

(
|u(x, t0)|2 + 2p(x, t0)

)]
dx

=
3

2

∫
BR∗(x0)

g(x, t0)

|x− x0|
dx

−R2
∗

∫
R

3
rBR∗(x0)

K(x,x0) :
(
u(x, t0)⊗ u(x, t0)

)
dx <

ε∗
2
,

where

K(x,x0) := ∇2
x

( 1

|x− x0|

)
.
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Due to (4.8) and the weakL2–continuity ofu, the function

t 7→ 3

2

∫
BR∗(x0)

g(x, t)

|x− x0|
dx

−R2
∗

∫
R

3
rBR∗(x0)

K(x,x0) :
(
u(x, t)⊗ u(x, t)

)
dx

is left–continuous at pointt0. Hence there existsδ∗ > 0 (sufficiently small)
such that

1

2

∫
BR∗(x0)

g(x, t)

|x− x0|
dx +

∫
BR∗(x0)

|ũx0(x, t)|2

|x− x0|
dx

+

∫
BR∗(x0)

1

|x− x0|
[
g(x, t)−

(
|u(x, t)|2 + 2p(x, t)

)]
dx <

ε∗

2

for all t0 − δ2
∗ ≤ t ≤ t0.
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However, then (4.9) yields

1

2R
‖u( . , t)‖2;BR(x0) <

ε∗
2

for t0 − δ2
∗ ≤ t ≤ t0.

Due to Lemma 12,z0 ≡ (x0, t0) is a regular point of solutionu.

Recall that we have used inequality (4.9), which follows from (4.6) and
condition (4.3). Moreover, condition (4.3) has also been used in order to
obtain (4.8).

If one uses condition (4.4) instead of (4.3) then the procedure is analogous.
�
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