Computation of Incompressible Flows: SIMPLE and related Algorithms

Milovan Perić
CoMeT Continuum Mechanics Technologies GmbH
milovan@continuummechanicstechnologies.de
• Consider momentum equations, discretized using an implicit method; the algebraic equation at node P is:

\[A_P^{u_i} u_{i,P}^{n+1} + \sum_l A_{l}^{u_i} u_{i,l}^{n+1} = Q_{u_i}^{n+1} - \left(\frac{\delta p^{n+1}}{\delta x_i} \right)_P \]

• The iterative solution method includes inner and outer iterations.

• Equations are solved one after another (sequential method).

• At the end of time step, all implicit terms are at the new time level...
Momentum equation solved first in mth outer iteration is:

$$A^u_{Pi} u^m_{i,P} + \sum_l A^u_{li} u^m_{i,l} = Q^{m-1}_{ui} - \left(\frac{\delta p^m}{\delta x_i} \right)^P$$

Velocities u^m_{i} do not satisfy continuity equation – need to be corrected; pressure also needs to be updated:

$$u^{m*}_{i} = u^m_{i} + u' \quad \text{and} \quad p^{m*} = p^{m-1} + p'$$

Momentum equation for corrected variables:

$$A^u_{Pi} u^{m**}_{i,P} + \sum_l A^u_{li} u^{m**}_{i,l} = Q^{m-1}_{ui} - \left(\frac{\delta p^{m*}}{\delta x_i} \right)^P$$

Subtract the first equation:

$$u'_{i,P} = -\frac{1}{A^u_{Pi}} \left(\frac{\delta p'}{\delta x_i} \right)^P$$

Here an approximation is made: these velocities are not updated!
Now enforce continuity equation for u_i^{m**} (incompressible flow):

$$\frac{\delta (\rho u_i^{m*})}{\delta x_i} + \frac{\delta (\rho u'_i)}{\delta x_i} = 0$$

This leads to the pressure-correction equation:

$$\frac{\delta}{\delta x_i} \left[\frac{\rho}{A_P} \left(\frac{\delta p'}{\delta x_i} \right) \right]_P = \left[\frac{\delta (\rho u_i^{m*})}{\delta x_i} \right]_P$$

Solve pressure-correction equation and correct velocities – now they satisfy the continuity equation.

Momentum equation will not be satisfied by u_i^{m**} if all terms are updated, due to the introduced approximation.

Unless further corrections are performed, pressure correction needs to be under-relaxed:

$$p_i^{m*} = p_i^{m-1} + \alpha_p p'_i$$

Optimum relation: $\alpha_p = 1 - \alpha_u$
SIMPLEC-Algorithm – I

• In SIMPLE, one sets \(u^m = u^{m**} \) and \(p^m = p^{m*} \) and proceeds to the next outer iteration.

• Instead of neglecting the velocity correction at neighbor nodes, one can approximate its effect by assuming:

\[
\frac{u'_{i,P}}{A^u_i} \approx \frac{\sum_l A^u_i u'_{i,l}}{\sum_l A^u_i} \Rightarrow \sum_l \frac{A^u_i u'_{i,l}}{A^u_i} \approx u'_{i,P} \sum_l \frac{A^u_i}{A^u_i}
\]

• When \(u'^{m**}_i \) is introduced on both sides of the momentum equation for corrected velocity and pressure, we obtain:

\[
u'_{i,P} = -\frac{1}{A^u_i} \left(\frac{\delta p'}{\delta x_i} \right)_P - \frac{\sum_l \frac{A^u_i u'_{i,l}}{A^u_i}}{A^u_i}
\]

• By using the above approximation, we obtain a simpler relation:

\[
u'_{i,P} = -\frac{1}{A^u_i + \sum_l A^u_i} \left(\frac{\delta p'}{\delta x_i} \right)_P
\]

Enforce continuity and obtain pressure-correction equation; no under-relaxation for \(p' \).
In PISO, correction process from SIMPLE is continued:

\[A_P^{ui} u_{i,P}^{m***} + \sum_l A_l^{ui} u_{i,l}^{m**} = Q_{u_i}^{m-1} - \left(\frac{\delta p^{m**}}{\delta x_i} \right)_P \]

Subtract equation for \(u_{i}^{m**} \) to obtain:

\[u_{i,P}'' = \tilde{u}_{i,P}' - \frac{1}{A_P^{ui}} \left(\frac{\delta p''}{\delta x_i} \right)_P, \quad \tilde{u}_{i,P}' = -\sum_l A_l^{ui} u_{i,l}' \]

Enforce continuity on \(u_{i}^{m***} \) to obtain the second pressure-correction equation:

\[\frac{\delta}{\delta x_i} \left[\frac{\rho}{A_P^{ui}} \left(\frac{\delta p''}{\delta x_i} \right) \right]_P = \left[\frac{\delta (\rho \tilde{u}_i')}{\delta x_i} \right]_P \]

The right-hand side can be computed because \(u' \) is available, but one needs the coefficient matrix from momentum equation (which is usually overwritten by the matrix for \(p' \)).
PISO-Algorithm – II

- The correction process can be continued by adding one more * and ‘; often 3-5 correctors are performed...
- No under-relaxation for pressure-correction is needed.
- PISO is seldom used for steady-state problems, but is often used for transient problems:
 - Momentum equations are solved only once, with mass fluxes and all deferred corrections based on solution from previous time step;
 - Several pressure corrections are applied, and linearized momentum equations are also explicitly updated.
 - If the non-linearity in momentum equations is not updated, PISO is not accurate enough; if it is updated, SIMPLE is more efficient...
- Another method was proposed by Patankar (seldom used): use SIMPLE only to correct velocities and enforce continuity...
SIMPLER-Algorithm

• Pressure is obtained by requiring that the corrected velocities satisfy the momentum equation without simplification:

\[A_P^{u_i} u_i^{m} + \sum_l A_l^{u_i} u_{i,l}^{m} = Q_{u_i}^{m-1} - \left(\frac{\delta p^m}{\delta x_i} \right)_P \]

• The relation between corrected velocity and unknown pressure is:

\[u_i^{m} = \frac{Q_{u_i}^{m-1} - \sum_l A_l^{u_i} u_{i,l}^{m}}{A_P^{u_i}} - \frac{1}{A_P^{u_i}} \left(\frac{\delta p^m}{\delta x_i} \right)_P = \hat{u}_i^{m} = \frac{1}{A_P^{u_i}} \left(\frac{\delta p^m}{\delta x_i} \right)_P \]

• By enforcing continuity again, pressure equation is obtained:

\[\frac{\delta}{\delta x_i} \left[\frac{\rho}{A_P^{u_i}} \left(\frac{\delta p^m}{\delta x_i} \right) \right]_P = \left[\frac{\delta (\rho \hat{u}_i^{m})}{\delta x_i} \right]_P \]

The r.h.s. can be computed since \(u' \) is known from SIMPLE-step.
Boundary Conditions for Pressure-Correction

- When boundary velocity is specified, its correction is zero; this is equivalent to specified zero-gradient of pressure-correction (Neumann-condition).

- If velocity is specified at all boundaries (or treated as such within one outer iteration), pressure-correction equation has zero-gradient condition on all boundaries...

- The solution than only exists, if the sum of all source terms in pressure-correction equation is equal to zero!

- In FV-methods this is ensured if mass conservation is ensured by boundary velocities for the solution domain as a whole (mass fluxes at all inner CV-faces cancel out)...

- For incompressible flows, the solution of p'-equation is not unique (one can add a constant to it); $p' = 0$ is held at a reference point...
Comparison of SIMPLE and PISO – I

Computation of laminar flow around circular cylinder in a channel: Polyhedral grid in the vicinity of the cylinder. Periodic solution was first obtained using second-order discretization in space and time and SIMPLE-method; it was then continued with both SIMPLE and PISO for another 2 s.
Computed instantaneous pressure and velocity field at one time. Von Karman vortex street is obtained (Reynolds-number is 100).

Cylinder is not at the center of the channel, so the vortex shedding is not symmetric...
Comparison of SIMPLE and PISO – III

Simulation continued using transient SIMPLE and time step 0.005 s (red line), and with PISO using 4 time steps: 0.005 s (blue line), 2 times smaller (0.0025 s; gold line), 4 times smaller (0.00125 s; green line) and 8 times smaller (0.000625 s, black line).

PISO-solutions are converging towards SIMPLE-solution, but with 1st-order... SIMPLE performed 4 outer iterations per time step, PISO 4-5 corrector steps...
SIMPLE-Algorithm for Polyhedral Grids – I

- Second order discretization in space and time is assumed (midpoint rule, linear interpolation, central differences).
- Pressure is treated in a conservative way: pressure forces computed at CV-faces.
- The net pressure force can be expressed via pressure gradient using Gauss-rule:

\[Q_{i,P}^p = - \int_S p \mathbf{i}_i \cdot \mathbf{n} \, dS = - \int_V \frac{\partial p}{\partial x_i} \, dV \]

\[\sum_k p_k S_k^i \approx \left(\frac{\partial p}{\partial x_i} \right)_p \Delta V \Rightarrow \left(\frac{\partial p}{\partial x_i} \right)_p = \frac{\sum_k p_k S_k^i}{\Delta V} \]

- At the start of a new outer iteration, momentum equations are solved to obtain \(u_i^{m*} \).
For the discretized continuity equation in a FV-method, one needs to compute mass fluxes through CV-faces.

Simple linear interpolation with a colocated variable arrangement leads to problems (oscillatory solutions).

The usual solution to this problem is the so-called “Rhie-Chow” correction, which is added to interpolated velocity:

\[
v_{n,k}^* = (v_{n,k}^* - (\Delta V)_k \left(\frac{1}{A_P} \right)_k \left[\left(\frac{\delta p^m - 1}{\delta n} \right)_k - \left(\frac{\delta p^m - 1}{\delta n} \right)_k \right]
\]

\[
v_{n,k} = (\mathbf{v} \cdot \mathbf{n})_k \quad – \text{velocity component normal to CV-face.}
\]

The term in brackets represents the difference between pressure derivative computed at the face and the average of pressure derivatives computed at CV-centroids.

It is proportional to the third derivative of pressure multiplied by mesh spacing squared.
SIMPLE-Algorithm for Polyhedral Grids – III

• Averaged gradient at CV-face can be computed by averaging pressure gradients computed at CV-centroids:
 \[
 \left(\frac{\delta p^m - 1}{\delta n} \right)_k = \overline{\nabla p}_k \cdot \mathbf{n}_k
 \]

• The derivative at CV-face is computed as in diffusion fluxes...

• The mass fluxes are computed using interpolated velocities:
 \[
 \dot{m}^*_m = \int_{S_k} \rho v \cdot \mathbf{n} \, dS \approx \left(\rho v^*_n S \right)_k
 \]

• These fluxes do not satisfy continuity equation – there is an imbalance:
 \[
 \sum_k \dot{m}^*_m = \Delta \dot{m}_p
 \]

• The mass fluxes need to be corrected, as explained earlier...
Velocity correction at CV-face is proportional to the gradient of pressure-correction (SIMPLE-approximation):

\[(v'_n)_k \approx - (\rho \Delta V S)_k \left(\frac{1}{A^v_n} \right)_k \left(\frac{\delta p'}{\delta n} \right)_k \]

Since pressure-correction tends to zero as outer iterations converge, additional approximations are possible – neglecting non-orthogonality:

\[\left(\frac{\partial \phi}{\partial n} \right)_k \approx \frac{\phi_{N_k} - \phi_P}{|r_{N'_k} - r_{P'}|} + \left[\frac{(\nabla \phi)_{N_k} \cdot (r_{N'_k} - r_{N_k}) - (\nabla \phi)_P \cdot (r_{P'} - r_P)}{|r_{N'_k} - r_{P'|}} \right]^{\text{old}} \]

\[\left(\frac{\delta p'}{\delta n} \right)_k \approx \frac{p'_{N_k} - p'_P}{(r_{N_k} - r_P) \cdot n} \]

The rest is neglected, but could be taken into account in another corrector...
Now enforce continuity equation (incompressible flow):

\[\sum_k m_k^m + \sum_k m_k'^{} = 0 \quad \text{with} \quad m_k' \approx (\rho v_n' S)_k \]

The result is a pressure-correction equation:

\[A_P^' p_P^' + \sum_l A_l^' p_l^' = -\Delta m_P \]

Solve pressure-correction equation to obtain \(p' \).

Correct velocities (mass fluxes) at CV-faces; they now satisfy continuity equation.

Correct also velocities at CV-centroids...

Correct pressure by adding only a fraction of \(p' \) (for steady-state flows, 0.1 to 0.3; for transient flows, 0.3 to 0.9, depending on time-step size and grid non-orthogonality).
SIMPLE-Algorithm for Polyhedral Grids – VI

- Specified velocity at boundary => zero-gradient in pressure-correction...
- Specified pressure at boundary => velocity extrapolated and corrected...

\[
\begin{align*}
\nu_{n,k}^m &= (\nu_{n,k}^m)_k - (\Delta V)_k \left(\frac{1}{A_P^{v_n}} \right)_k \left[\left(\frac{\delta p_n^{m-1}}{\delta n} \right)_k - \left(\frac{\delta p_n^{m-1}}{\delta n} \right)_k \right] \\

\end{align*}
\]

Computed at boundary

Cell-center value

Extrapolated to cell face

\[
\begin{align*}
(v'_n)_k &\approx - (\rho \Delta V \cdot S)_k \left(\frac{1}{A_P^{v_n}} \right)_k \left(\frac{\delta p'}{\delta n} \right)_k \\

\left(\frac{\delta p'}{\delta n} \right)_k &\approx \frac{p'_{N_k} - p'_P}{(r_{N_k} - r_P) \cdot \mathbf{n}}
\end{align*}
\]

\(N_k \) – boundary node
Pressure-Based Methods for Compressible Flows – I

• Many methods are designed specifically for compressible flow.
• These methods are usually not efficient when Ma ~ 0…
• Special methods (e.g. pre-conditioning) are used to make methods work also for weakly compressible flows…
• SIMPLE-type methods were originally developed for incompressible flows…
• They can be extended to compressible flows – and they work well (used in most commercial and public codes)…
• One needs to solve also the energy equation…
• ... and use equation of state to obtain density once pressure and temperature are updated.
Pressure-Based Methods for Compressible Flows – II

- The energy equation in terms of enthalpy:

\[
\frac{\partial}{\partial t} \int_V \rho h \, dV + \int_S \rho h v \cdot n \, dS = \int_S \lambda \nabla T \cdot n \, dS + \int_V (v \cdot \nabla p + S : \nabla v) \, dV + \frac{\partial}{\partial t} \int_V p \, dV
\]

Viscous part of stress tensor, \(S = \tau_{ij} i_i i_j \)

- The viscous stresses have now an additional contribution:

\[
\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \delta_{ij} \nabla \cdot v
\]

- For an ideal gas, \(h = c_p T \) and the equation of state is: \(\rho = \frac{p}{RT} \)

- The continuity equation now has the unsteady term and mass flux is non-linear, since both density and velocity are variable:

\[
\frac{\partial}{\partial t} \int_V \rho \, dV + \int_S \rho v \cdot n \, dS = 0
\]
Pressure-Based Methods for Compressible Flows – III

- The first step is the solution of momentum equations – as for incompressible flows.

- The major changes are in the discretized continuity equation (for the sake of simplicity, implicit-Euler method assumed):

 \[
 \frac{\Delta V}{\Delta t} (\rho^{m-1} - \rho^n)_P + \sum_k \dot{m}_k^{m*} = \Delta \dot{m}_P
 \]

- Mass fluxes have to be corrected to satisfy continuity; for this, both velocity and density need to be corrected. Velocity correction is as before:

 \[
 (v'_n)_k \approx - (\rho \Delta V S)_k \left(\frac{1}{A_P^n} \right)_k \left(\frac{\delta p'}{\delta n} \right)_k
 \]

- Density correction follows from equation of state:

 \[
 \rho'_k \approx \left(\frac{\partial \rho}{\partial p} \right)_T p'_k = \frac{p'_k}{RT_k}
 \]
The corrected mass flux can be expressed as:

$$(m^* + m')_k = (\rho^{m-1} + \rho')_k (v^*_n + v'_n)_k S_k .$$

One can neglect the product of density and velocity correction (as it tends to zero faster than other terms):

$$m'_k \approx (\rho^{m-1} v'_n S)_k + (\rho' v^*_n S)_k$$

The corrected continuity equation now reads:

$$\frac{\Delta V}{\Delta t} \rho'_p + \sum_k m'_k + \Delta m_p = 0$$

By substituting expressions for velocity and density correction, one again obtains a pressure-correction equation...

... which differs significantly from one for incompressible flow.
Pressure-Based Methods for Compressible Flows – V

- The pressure-correction equation is no longer of Poisson-type; it now resembles a transport equation with convective and diffusive fluxes...

- Diffusive part comes from velocity correction in face mass flux (proportional to pressure gradient)...

- Convective part and time derivative come from density correction (directly proportional to pressure at face or P)...

- Pressure now has to be specified on part of the boundary, and as initial condition...

- The ratio of convective to diffusive contribution is proportional to Ma^2, so the method adapts automatically to the type of flow and works at both limits ($Ma = 0$ and Ma very high).
Pressure-Based Methods for Compressible Flows – VI

- When Mach-number is high, density correction plays the dominant role – diffusive part is negligible (like solving continuity equation for density)...

- When Mach-number is very low, density correction becomes small and the method behaves as for incompressible flow.

- This method also works for acoustics applications (propagation of pressure waves at low Mach-number)...

- When shocks are present, interpolation of density to CV-face may need special attention (linear interpolation may lead to oscillations)...

- Local blending of upwind-approximations, gradient-limiter, or special TVD, ENO or WENO-schemes are used...
Non-uniform and uniform grids (from 8 x 8 CV to 256 x 256 CV)
Linear interpolation and central-difference differentiation with midpoint-rule integrals; SIMPLE-algorithm, FV-method
Estimation of discretization errors for the strength of primary and secondary vortex by Richardson-extrapolation: 2nd-order convergence for both quantities and both grids – but errors much smaller on non-uniform grid.
Non-uniform grids (from 10 x 10 CV to 160 x 160 CV).

Upwind, Central, and cubic interpolation with midpoint-rule integrals; cubic interpolation with Simpson-rule integrals.

Centerline velocity profiles: high-order interpolation causes oscillations on coarse grids, but much higher accuracy when grids are fine enough...
Effects of under-relaxation factors on convergence of outer iterations for the steady-state lid-driven cavity flow at $Re = 1000$, 32×32 CV uniform grid: staggered variable arrangement (left) and colocated variable arrangement (right)
Effects of grid fineness and under-relaxation factors on convergence of outer iterations for the steady-state lid-driven cavity flow at Re = 1000, 32 x 32 CV and 64 x 64 CV uniform grid, staggered and colocated variable arrangement.

The fine the grid, the more important it is to use optimal under-relaxation.
Drag coefficients for the 2D flow around a cylinder in a channel as functions of grid size: steady flow at Re = 20 (left) and the maximum drag coefficient in a periodic unsteady flow at Re = 100 (right). Also shown are extrapolated values using Richardson-extrapolation.
Variation of drag and lift in a periodic unsteady flow at $Re = 100$, computed on three grids. The difference between solutions on consecutive grids reduces by a factor 4, as expected of a 2nd-order discretization method.
Stagnation-Point Flow

Linear interpolation between two cell-centers provides value at k'-location:

$$\phi_{k'} = \frac{|r_k - r_P|}{|r_{N_k} - r_P|} \phi_{N_k} + \frac{|r_{N_k} - r_k|}{|r_{N_k} - r_P|} \phi_P$$

Using

$$\phi_k \approx \phi_{k'}$$

Using

$$\phi_k \approx \phi_{k'} + \left(\nabla \phi \right)_{k'} \cdot (r_k - r_{k'})$$