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Steady-State Navier-Stokes Flow

around a Moving Body

Summary. In this article we present an updated account of the fundamental mathematical results

pertaining the steady-state flow of a Navier-Stokes liquid past a rigid body which is allowed to rotate.

Precisely, we shall address questions of existence, uniqueness, regularity, asymptotic structure, generic

properties, and (steady and unsteady) bifurcation. Moreover, we will perform a rather complete analy-

sis of the long-time behavior of dynamical perturbation to the above flow, thus inferring, in particular,

sufficient conditions for their stability and asymptotic stability.

1 Introduction

The motion of a rigid body in a viscous liquid represents one of the most classical

and most studied chapters of applied and theoretical fluid mechanics. Actually, the

study of this problem, at different scales, is at the foundation of many branches of

applied sciences such as biology, medicine, and car, airplane and ship manufacturing,

to name a few. The dynamics of the liquid associated to these problems is, of course,

of the utmost relevance and, already in very elementary cases, can be quite intricate or

even, at times, far from being obvious. For example, consider a rigid sphere of radius

R, moving by constant translatory motion with speed v0 and entirely immersed in a

surrounding liquid, of kinematic viscosity ν. Then, it is experimentally observed (see

[69]) that if Re := v0R/ν <∼200, the flow is steady, stable and axisymmetric. However,
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if 200<∼Re<∼270, this flow loses its stability, and another stable, steady but no longer

axisymmetric flow sets in, as evidenced by the shifting of the wake with respect to the

direction of motion of the sphere. It is worth emphasizing the loss of symmetry of the

flow, in spite of the symmetry of the data. Moreover, if 270<∼Re<∼300, the steady flow

is unstable, and the liquid regime becomes oscillatory, as shown by the highly organized

time-periodic motion of the wake behind the sphere. The remarkable feature of this

phenomenon is that the unsteadiness of the flow arises spontaneously, even though

the imposed conditions are time-independent (constant speed of the body). Another

significant example is furnished if now the sphere, instead of moving by a translatory

motion, rotates with constant angular velocity, ω0, along one of its diameters. Here,

again in view of the symmetry of the data, one would guess that, at least for “small”

values of |ω0| (more precisely, of the dimensionless number |ω0|R2/ν), the flow of the

liquid is steady with streamlines being circles perpendicular to and centered around the

axis of rotation. Actually, this is not the case, unless the inertia of the liquid is entirely

disregarded. In fact, though the flow is steady, due to inertia the sphere behaves like

a “centrifugal fan”, receiving the liquid near the poles and throwing it away at the

equator; see [12], [87].

Already from these brief considerations one can fairly deduce that a rigorous

mathematical study of the motion of a viscous liquid around an obstacle presents a

plethora of intriguing problems of considerable difficulties, beginning with the very

existence of steady-state solutions under general conditions on the data and their

uniqueness, going through more complicated issues such as analysis of steady and

time-periodic bifurcation, and long time behavior of time-dependent perturbations. It

is objective of this article to address some of these fundamental problems, as well as

point out certain outstanding questions that still await for an answer.

In real experiments the liquid occupies, of course, a finite (though “sufficiently

large”) spatial region. However, “wall effects” are irrelevant for the occurrence of the

basic phenomena of the type described above. Therefore, in order not to spoil their

underlying causes, it is customary to formulate the mathematical theory of the motion

of a body in a viscous liquid as an exterior problem. This corresponds to the assumption

that the liquid fills the entire three-dimensional space outside the body. It should be

remarked that this assumption, though simplifying on one hand, on the other hand

adds more complication to the mathematical analysis, in that classical and powerful

tools valid for bounded flow, are no longer available in this case. As it turns out, most

of the questions that we shall analyze require, for their answers, a somewhat detailed

analysis of the solutions at large distance from the body.

From a historical viewpoint, the mathematical analysis of the steady flow of a

viscous liquid past a rigid body may be traced back to the pioneering contributions of

Stokes [107], Kirchhoff [73] and Thomson (Lord Kelvin) & Tait [108] in mid and late

1880’s. However, it was only in the 1930’s that, thanks to the far-reaching and genuinely

new ideas introduced by Jean Leray [83], the investigation of the problem received a

substantial impulse. Leray’s results, mostly devoted to the existence problem, were
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further deepened, extended and completed over the years by a number of fundamental

researches due, mostly, to O.A. Ladyzhenskaya, H. Fujita, R. Finn, K.I. Babenko, and

J.G. Heywood. It is important to observe that the efforts of all these authors were

directed to the study of cases where the body is not allowed to spin. The more general

and more complicated situation of a rotating body became the object of a systematic

study only at the beginning of the third millennium, with the basic contributions,

among others, of R. Farwig, T. Hishida, M. Hieber, Y. Shibata, the authors of the

present paper and their associates.

Main goal of this review article is to furnish an up-to-date state of the art of

the fundamental mathematical properties of steady-state flow of a Navier-Stokes liquid

past a rigid body, which is also allowed to rotate. Thus, existence, uniqueness, regu-

larity, asymptotic structure, generic properties, and (steady and unsteady) bifurcation

issues will be addressed. In addition, a rather complete analysis of the long-time be-

havior of dynamical perturbation to the above solutions will be performed to deduce,

in particular, sufficient conditions for their stability and asymptotic stability as well.

With the exception of part of the last Section 10, this study will be focused on

the case when the translational velocity, v0, of the body is not zero, and its angular

velocity is either zero or else has a non-vanishing component in the direction of v0. The

reason for such a choice lies in the fact that under these assumptions, the mathematical

questions listed above have a rather complete answer. On the other side, if one relaxes

these assumptions, the picture becomes much less clear. The interested reader is referred

to [47, §§ X.9 and XI.7] for all main properties known in this case. Furthermore, for

the same reason of incompleteness of results, only consider three-dimensional flow will

be considered. An update source of information regarding plane motions can be found,

for example, in [47, Chapter XII], [38], and [58]. Finally, other significant investigations

are left out of this article, such as the motion of the coupled system body-liquid (i.e.,

when the motion of the body is no longer prescribed, but becomes part of the problem),

as well as the very important case when the body is deformable, for which the reader

is referred to [40] and [46; 5], respectively.

The plan of the article is as follows. After collecting in Section 2 the main no-

tation used throughout, in Section 3 it is provided the mathematical formulation of

the problem. Section 4 is dedicated to existence questions. There, one begins to re-

call classical approaches and corresponding results due to Leray, Ladyzhenskaya and

Fujita. Successively, improved findings obtained by the function-analytic method in-

troduced by Galdi are presented, based on the degree for proper Fredholm maps of

index 0. Regularity and uniqueness questions of solutions are next addressed in Sec-

tions 5 and 6, respectively. Section 7 is dedicated to the (spatial) asymptotic behavior,

beginning by recalling the original results of Finn and Babenko when the body is not

spinning, to the more recent general contributions of Galdi & Kyed and Deuring and

their associates, valid also in the case of a rotating body. Successively, in Section 8,

one investigates the geometric structure of the solution manifold for data of arbitrary

“size”. In particular, it is shown that, generically, the number of solutions correspond-

ing to a given (nonzero) translational velocity and angular velocity is finite and odd.
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The following Section 9 is devoted to steady and time-periodic (Hopf) bifurcation of

steady-state solutions. There, it is provided necessary and sufficient conditions for this

type of bifurcation to occur. In the final Section 10 one analyzes the long time be-

havior of time-dependent perturbations to a given steady-state, providing, as a special

case, sufficient conditions for attractivity and asymptotic stability. These results can

be, roughly speaking, grouped in two different categories. The first one, where one as-

sumes that the unperturbed steady state is “small in size”. In the second one, instead,

one makes suitable hypothesis on the location in the complex plane of eigenvalues of

the relevant linearized operator (spectral stability).

In conclusion to this introductory section, it is worth emphasizing that through-

out this article there have been highlighted a number of intriguing unsettled questions

that still need an answer and represent as many avenues open to the interested math-

ematician.

2 Notation

The symbols N, Z, and R, C stand for the sets of positive and relative integers, and

the fields of real and complex numbers, respectively. We also put N+ := N ∩ (0,∞),

R+ := R ∩ (0,∞).

Vectors in R3 will be indicated by boldfaced letters. A base in R3 is denoted by

{e1, e2, e3} ≡ {ei}, and the components of a vector v in the given base, by v1, v2 and

v3.

Unless stated otherwise, the Greek letter Ω will denote a fixed exterior domain

of R3, namely, the complement of the closure, B, of a bounded, open, and simply

connected set of R3. It will be assumed Ω of class C2, and the origin O of the coordinate

system {O, ei} is taken in the interior of B. Also, d is the diameter of B, so that, setting

BR := {x ∈ R3 : (x2
1 + x2

2 + x2
3)

1

2 < R}, R > 0, one has B ⊂ Bd.

For R ≥ d, the following notation will be adopted

ΩR = Ω ∩BR , ΩR = Ω −ΩR ,

where the bar denotes closure.

One puts ut := ∂u/∂t, ∂1u := ∂u/∂x1, and, for α a multi-index, one denotes by

Dα the usual differential operator of order |α|. For |α| = 2 one shall simply write D2.

Given an open and connected set A ⊆ R3, Lq(A), Lq
loc(A), 1 ≤ q ≤ ∞, Wm,q(A),

Wm,q
0 (A) (W 0,q ≡ W 0,q

0 ≡ Lq), Wm−1/q,q(∂A), m ∈ N+ ∪ {0}, stand for the usual

Lebesgue, Sobolev, and trace space classes, respectively, of real or complex functions.

(The same font style will be used to denote scalar, vector and tensor function spaces.)

Norms in Lq(A), Wm,q(A), and Wm−1/q,q(∂A) are indicated by ‖.‖q,A, ‖.‖m,q,A, and

‖.‖m−1/q,q(∂A). The scalar product of functions u, v ∈ L2(A) will be denoted by (u, v)A.

In the above notation, the subscript A will be omitted, unless confusion arises.

As customary, for q ∈ [1,∞] one lets q′ = q/(q − 1) be its Hölder conjugate.
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By Dm,q(Ω), 1 < q <∞, m ∈ N+, one denotes the space of (equivalence classes

of) functions u such that

|u|m,q :=
∑

|α|=m

(∫

Ω

|Dαu|q
) 1

q

<∞ ,

and by Dm,q
0 (Ω) the completion of C∞

0 (Ω) in the norm | · |m,q. Moreover, setting,

D(Ω) := {u ∈ C∞
0 (Ω) : divu = 0} ,

D1,2
0 (Ω) is the completion of D(Ω) in the norm | · |1,2. By D−1,2

0 (Ω) [respectively,

D−1,2
0 (Ω)] one denotes the normed dual space of D1,2

0 (Ω) [respectively, D1,2
0 (Ω)], and

by 〈·, ·〉 [respectively, [·, ·]] the associated duality pairing.

By Hq(Ω) it is indicated the completion of D(Ω) in the norm Lq(Ω), and one

simply writes H(Ω) for q = 2. Further, P is the (Helmholtz-Weyl) projection from

Lq(Ω) onto Hq(Ω). Notice that, since Ω is a sufficiently smooth exterior domain, P is

independent of q.

If M is a map between two spaces, by D (M), N (M) and R (M) one denotes its

domain, null space and range, respectively, and by Sp (M) its spectrum.

In the following, B is a real Banach space with associated norm ‖ · ‖B. The

complexification of B is denoted by BC := B + iB. Likewise, the complexification of a

map M between two Banach spaces will be indicated by MC.

For q ∈ [1,∞], Lq(a, b;B) is the space of functions u : (a, b) ∈ R → B such that

(∫ b

a

‖u(t)‖q
B dt

)1

q

<∞, if q ∈ [1,∞) ; ess sup
t∈(a,b)

‖u(t)‖B <∞, if q = ∞.

Given a function u ∈ L1(−π, π;B), u is its average over [−π, π], namely,

u :=
1

2π

∫ π

−π

u(t) dt .

Furthermore, one says that u is 2π-periodic, if u(t+ 2π) = u(t), for a.a. t ∈ R. Set

W 2
2π,0(Ω) :=

{
u ∈ L2(−π, π;W 2,2(Ω) ∩ D1,2

0 (Ω)) and ut ∈ L2(−π, π;H(Ω)) :

u is 2π-periodic with u = 0
}

with associated norm

‖u‖W 2
2π,0

:=

(∫ π

−π

‖ut(t)‖2
2 dt

)1/2

+

(∫ π

−π

‖u(t)‖2
2,2 dt

)1/2

.

One also defines

H2π,0(Ω) :=
{
u ∈ L2(−π, π;H(Ω)) : u is 2π-periodic with u = 0

}
.

Finally, C , C0, C1, etc., denote positive constants, whose particular value is

unessential to the context. When one wishes to emphasize the dependence of C on

some parameter ξ, it will be written C(ξ).



6

3 Formulation of the Problem

Suppose one has a rigid body, B, moving by prescribed motion in an otherwise quiescent

viscous liquid, L , filling the entire space outside B. Mathematically, B will be taken as

the closure of a simply connected bounded domain of class C2. For the sake of generality,

a given velocity distribution is allowed on ∂B, due, for example, to a tangential motion

of the boundary wall or to an outflow/inflow mechanism, as well as it is assumed that

on L is acting a given body force. (The presence in the model of a body force other

than gravity –whose contribution can be always incorporated in the pressure term–

could be questionable on physical grounds. However, from the mathematical point of

view, it might be useful in consideration of extending the results to more general liquid

models, where now the “body force” would represent the contribution to the linear

momentum equation of other appropriate fields.) In order to study the motion of L

under these circumstances, it is appropriate to write its governing equations in a body-

fixed frame, S, so that the region occupied by L becomes time-independent. One thus

gets

vt + (v − V ) · ∇v + ω × v = ν∆v −∇p+ f

divv = 0

}
in Ω × (0,∞) . (1)

(For the derivation of these equations, we refer to [40, Section 1, eq. (1.15)].) In these

equations, v, ρp are absolute velocity and pressure fields of L , respectively, ρ and ν

its (constant) density and kinematic viscosity, and f is the body force acting on L .

Moreover,

V := ξ + ω × x ,
with ξ and ω, in the order, velocity of the center of mass and angular velocity of B

in S. Finally, Ω := R3\B is the time-independent region occupied by L that will

be assumed of class C2. (Several peripheral results continue to hold with less or no

regularity at all. This will be emphasized in the assumptions occasionally.) The system

(1) is endowed with the following boundary condition

v = v∗ + V at ∂Ω × (0,∞) , (2)

with v∗ a prescribed field, expressing the adherence of the liquid at the boundary walls

of the body, and asymptotic conditions

lim
|x|→∞

v(x, t) = 0 , t ∈ (0,∞) , (3)

representative of the property that the liquid is quiescent at large spatial distances

from the body.

Throughout this paper it shall be assumed that the vectors ξ and ω do not depend

on time. This assumption imposes certain limitations on the type of motion that B

can execute with respect to a fixed inertial frame. Precisely [47], the center of mass of

B must move with constant speed along a circular helix whose axis is parallel to ω.

The helix will degenerate into a circle when ξ · ω = 0, in which case the motion of

the body reduces to a constant rotation. Without loss of generality, we set ω = ω e1,
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ω ≥ 0, and ξ = v0 e with e a unit vector. As indicated in the introductory section,

one is only interested in the case when the motion of the body does not reduce to a

uniform rotation. For this reason, unless otherwise stated, it will be assumed

v0 6= 0 and e · e1 6= 0. (4)

By shifting the origin of the coordinate system S suitably (Mozzi-Chasles trans-

formation), and scaling velocity and length by v0 e ·e1 and d, respectively, one can then

show that (1) can be put in the following form in the shifted frame S ′ (see [47, pp.

496-497])

−vt +∆v + λ∂1v + T (e1 × x· ∇v − e1 × v)

= λv · ∇v + ∇p+ f

divv = 0





in Ω × (0,∞)

v = v∗ + V at ∂Ω × (0,∞) ; lim
|x|→∞

v(x, t) = 0 , all t ∈ (0,∞) ,

(5)

where T :=
ω d2

ν
,

λ :=





v0 d

ν
e · e1 , if ω 6= 0 ,

v0 d

ν
, if ω = 0 (e ≡ e1) ,

(6)

and

V := e1 + T
λ
e1 × x . (7)

Of course, all fields entering the equations in (5) are regarded as non-dimensional.

Observe also that, in the rescaled length variables, the diameter of B becomes 1.

In order to simplify the presentation, the origin of the coordinate system S ′ will be

supposed to lie in the interior of B. Finally, we notice that, in view of (4), it follows

λ 6= 0. Since all results presented in this article are independent of whether λ ≷ 0, it

will assumed throughout λ > 0.

Of particular relevance to this article are time-independent solutions (steady-

state flow) of problem (5)–(7), which may occur only when f and v∗ are also time-

independent. From (5)one thus infers that these solutions must satisfy the following

boundary-value problem

∆v + λ∂1v + T (e1 × x · ∇v − e1 × v) = λv · ∇v + ∇p+ f

divv = 0

}
in Ω

v = v∗ + V at ∂Ω ; lim
|x|→∞

v(x) = 0 .

(8)

The primary objective of this article is to provide an updated review of some

fundamental properties of solutions to (6)–(8). The latter include existence, uniqueness,

regularity, asymptotic structure, generic properties, and steady and unsteady bifurca-

tion issues. Moreover, a rather complete analysis of the long-time behavior of dynami-

cal perturbation to these solutions will be performed that will lead, in particular, to a

number of stability and asymptotic stability results, under various assumptions.
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4 Existence

The starting point is the following general definition of weak (or generalized) solution

for problem (6)–(8) [81].

Definition 1. Let f ∈ D−1,2
0 (Ω), v∗ ∈ W 1/2,2(∂Ω). A vector field v : Ω → R3 is a

weak solution to problem (8)–(7) if the following conditions hold

(a) v ∈ D1,2(Ω) with divv = 0;

(b) v satisfies the equation

−(∇v,∇ϕ)+ λ (∂1v,ϕ) + T (e1 × x · ∇v − e1 × v,ϕ) + λ (v · ∇ϕ,v)

= 〈f ,ϕ〉 , for all ϕ ∈ D(Ω) .
(9)

(c) v = v∗ + V at ∂Ω in the trace sense.

(d) lim
R→∞

R−2

∫

∂BR

|v| = 0 .

(Formally, (9) is obtained by taking the scalar product of both sides of (8)1 by ϕ,

and integrating by parts over Ω. Since D1,2(Ω) ⊂ W 1,2(ΩR), R > 1, condition (c) is

meaningful.)

Remark 1. If f ∈ W−1,2
0 (Ω ′), for all bounded Ω ′ with Ω ′ ⊂ Ω, then to every weak

solution one can associate a suitable corresponding pressure field. More precisely, there

exists p ∈ L2
loc(Ω) such that

−(∇v,∇ψ)+ λ (∂1v,ψ) + T (e1 × x · ∇v − e1 × v,ψ) + λ (v · ∇ψ,v)

= −(p, divψ) + [f ,ψ] , for all ψ ∈ C∞
0 (Ω) ,

where [·, ·] stands for the duality pairing D−1,2
0 ↔ D1,2

0 . Notice that this equation is

formally obtained by dot-multiplying both sides of (8)1 by ψ and integrating by parts

over Ω. The proof of this property, based on the representation of elements of D−1,2
0

vanishing on D1,2
0 , is given in [47, Lemma XI.1.1].

The next step is the construction of a suitable extension, U , of the boundary

data. The crucial property of such extension is condition (10) given below. In fact, as

will become clear later on, this allows one to obtain the fundamental a priori estimate

for the existence result. Now, the validity of (10) is related to the magnitude of the

flux through the boundary ∂Ω, Φ, of the field v∗:

Φ :=

∫

∂Ω

v∗ · n ,

with n unit outer normal to ∂Ω. For simplicity, it will be assumed Φ = 0, even though

all main results continue to hold also when |Φ| is sufficiently “small”. Th reader is

referred to Open Problem 1 for further considerations about this issue.

The existence of the appropriate extension of the boundary data is provided by

the following result whose proof can be found in [47, Lemma X.4.1]

Lemma 1 Let

v∗ ∈W 1/2,2(∂Ω),

∫

∂Ω

v∗ · n = 0 .
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Then, for any η > 0, there exists U = U (η,v∗,V, Ω) : Ω → R3 with bounded support

such that

(i) U ∈ W 1,2(Ω);

(ii) U = v∗ + V at ∂Ω;

(iii) divU = 0 in Ω.

Furthermore, for all u ∈ D1,2
0 (Ω), it holds that

|(u · ∇U ,u)| ≤ η |u|21,2. (10)

Finally, if ‖v∗‖1/2,2(∂Ω) ≤ M , for some M > 0, then

‖U‖1,2 ≤ C1‖v∗ + V‖1/2,2(∂Ω) (11)

where C1 = C1(η,M,Ω).

Remark 2. In view of the above result, it easily follows that the existence of a weak

solution is secured if there is u ∈ D1,2
0 (Ω) satisfying

−(∇u,∇ϕ) + λ (∂1u,ϕ) + T (e1 × x · ∇u− e1 × u,ϕ) + λ (u · ∇ϕ,u)

+λ[(U · ∇ϕ,u) − (u · ∇U ,ϕ)] − (∇U ,∇ϕ) + λ (∂1U −U · ∇U ,ϕ)

+T (e1 × x · ∇U − e1 ×U ,ϕ) = 〈f ,ϕ〉 , for all ϕ ∈ D(Ω) .

(12)

In fact, setting, v := u+U one gets at once that conditions (a)–(c) of Definition 1 are

met. Moreover, since, by Sobolev theorem D1,2
0 (Ω) ⊂ L6(Ω) (e.g. [47, Theorem II.7.5]),

from [47, Lemma II.6.3] it follows

lim
R→∞

1

R
3

2

∫

∂BR

|u| = 0 , for all u ∈ D1,2
0 (Ω) ,

so that also requirement (d) is met, even with a better order of decay. In view of all

the above, we may equally refer to both v and u as “weak solution”.

4.1 Early Contributions

It will be now presented and summarized classical approaches and results to the ex-

istence of weak solutions due, basically, to Jean Leray [83], Olga A. Ladyzhenskaya

[81] and Hiroshi Fujita [31]. Besides their historical relevance and intrinsic interest,

these results will also provide a further motivation for the entirely distinct approach

–recently introduced in [43; 49]–that will be describd in Section 5.

4.1.1 Leray’s Contribution

In his famous pioneering work on the steady-state Navier-Stokes equations [83, Chapitres

II & III] Leray shows that for any sufficiently regular f and v∗, with Φ = 0, there is

at least one corresponding solution (v, p) to (8)1,2,3–(7), which, in addition, satisfies
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v ∈ D1,2(Ω). (As a matter of fact, Leray requires f ≡ 0; [83, §3 at p. 32]. However,

for his method to go through, the weaker assumption of a “smooth” f would suffice.)

It is just in this weak sense that Leray interprets the condition at infinity (8)4. (As

noticed earlier on, this condition can be expressed in a sharper, though still weak,

way; see Remark 2.) Leray’s construction, basically, consists in solving the original

problem (8)1,2,3–(7) on each element of a sequence of bounded domains {Ωk}k>1 with

Ω = ∪∞
k=1Ωk, under the further condition v = 0 on the “fictitious” boundary ∂Bk (“in-

vading domains” technique). In turn, on every Ωk, a sufficiently smooth solution, vk, to

the system (8) is determined by combining Leray-Schauder degree theory with a uni-

form bound on the Dirichlet integral |vk|21,2. (It should be observed that, even though

the demonstration provided by Leray is presented in the language of Leray-Schauder

fixed-point theorem, such a result was not yet available at that time; see [85; 86].) The

latter is crucial, in that it allows Leray to select a subsequence that, uniformly on com-

pact sets, converges to a solution of the original problem, meant in a suitable integral

sense. It must be emphasized that in order to obtain the above bound, the property

(10) of the extension is crucial. (Notice that a bound on vk can also be obtained by

an alternative method, based on a contradiction argument; see [83, Chapitre II, §III].
Even though the latter is more general than the one based on the existence of an ex-

tension satisfying (10) (see [50, Introduction]), however, it does not necessarily provide

a uniform bound independent of k, and, therefore, is of no use in the context of the

“invading domains” technique.) An important feature of the solution constructed by

Leray is that it could be shown to satisfy the so called “generalized energy inequality”

−|u|21,2 − λ(u · ∇U ,u)− (∇U ,∇u) + λ (∂1U −U · ∇U ,u)

+T (e1 × x · ∇U − e1 ×U ,u) − 〈f ,u〉 ≤ 0 ,
(13)

formally obtained by setting ϕ ≡ u in (12) and replacing “ = ” with “ ≤ ”. A more

familiar form of (13) can be obtained if f and v∗ have some more regularity. For

example, if, in addition f ∈ L2(Ω) and v∗ ∈ W 3/2,2(∂Ω) then it can be shown that

(13) is equivalent to the following one (see [47, Theorem XI.3.1(i)])

−2‖D(v)‖2
2 +

∫

∂Ω

{(v∗ + V) · T (v, p) − λ

2
(v∗ + V)2v∗} · n− 〈f ,v〉 ≤ 0 , (14)

where T (v, p) = ∇v + (∇v)> − pI , I identity matrix, is the Cauchy stress tensor.

It is worth emphasizing that (14) would represent the energy balance for the motion

(v, p), provided one could replace “ ≤ ” with “ = ”. The inequality sign in the above

formulas is, again, a consequence of the little information that this solution carries at

large spatial distances. For the same reason, the uniqueness question is left out.

4.1.2 Ladyzhenskaya’s Contribution

Ladyzhenskaya was the first to introduce the definition and the use of the term “gen-

eralized (or weak) solution” as currently used, for steady-state Navier-Stokes problems

[81, p. 78]. Her construction still employs the “invading domains” technique utilized by
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Leray, but the way in which she proves the existence of the solution on each bounded

domain Ωk of the sequence is somewhat simpler and more direct. More precisely, La-

dyzenskaya considers (12) with T = 0 and v∗ ≡ 0, and shows that it can be equivalently

rewritten as a nonlinear equation in the Hilbert space D1,2
0 (Ωk):

M(u) := u+ λA(u) = F (15)

where F is prescribed D1,2
0 (Ωk) and A is a (nonlinear) compact operator. (The exten-

sion to the case T 6= 0 would be straightforward.) Therefore, the operator M, defined

on the whole of D1,2
0 (Ωk), is a compact perturbation of a homeomorphism. Moreover,

using arguments similar to Leray’s, one can show that every solution to (15) is uni-

formly bounded in D1,2
0 (Ωk), for all λ ∈ [0, λ0], arbitrary fixed λ0 > 0. Then, by the

Leray-Schauder degree theory it follows that (15) has a weak solution, uk ∈ D1,2
0 (Ωk),

for the given F . Since |uk|1,2 is uniformly bounded in k, Ladyzhenskaya shows that a

subsequence can be selected converging to a weak solution in the sense of Definition 1;

see Remark 2. It is worth emphasizing that, if Ω is an exterior domain, the operator

A is not compact, see [49, Proposition 80], so that the “invading domain technique” is

indeed necessary for the argument to work. Moreover, if u is merely in D1,2
0 (Ω), with

Ω exterior domain, the very equation (22) would not be meaningful in such a case.

Finally, it is important to observe that Ladyzhenskaya’s solution, as Leray’s, satisfies

only the generalized energy inequality (13), and, again, the uniqueness question is left

open because of the little asymptotic information carried by functions from D1,2
0 (Ω).

4.1.3 Fujita’s Contribution

Fujita’s approach to the existence of a weak solution [31] is entirely different from

those previously mentioned. In fact, it consists in adapting to the time-independent

case the method introduced by Eberhard Hopf for the initial-value problem [66]. The

method referred to above is the by now classical Faedo-Galerkin method. (Also, strictly

speaking, Fujita considers the case T = 0, even though the extension of his method to

the more general case presents no conceptual difficulty.) As is well known, the idea is to

look first for an “approximate solution” to (12), uN , in the manifold M (N) spanned

by the first N elements of a basis of D1,2
0 (Ω). This is a finite-dimensional problem

whose solution, at the N -th step, is found by solving a suitable nonlinear equation.

Fujita solves the latter by means of Brouwer fixed-point theorem [31, Lemma 3.1],

provided |Φ| is “small enough”, and then shows that |uN |1,2 is uniformly bounded in

N . With this information in hand, one can then select a subsequence {uN ′} that in

the limit N ′ → ∞ converges (in a suitable sense) to a vector u ∈ D1,2
0 (Ω) satisfying

(12); see also [47, Theorem X.4.1]. The advantage of Fujita’s approach, besides being

more elementary, resides also in the fact that the solution is constructed directly in

the whole domain Ω. However, also in this case, solutions satisfy only the generalized

energy inequality, and their uniqueness is also left out.
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4.2 A Function-Analytic Approach

The most significant aspect of solutions constructed by the above authors is that their

existence is ensured for data of arbitrary “size”, provided only the mass flux through

the boundary is not too large. (Notice that, of course, ‖v∗‖1/2,2,∂Ω arbitrarily “large”,

and |Φ| “small” are not, in general, at odds.) However, as emphasized already a few

times, these solutions possess no further asymptotic information at large distances other

than that deriving from the fact that v ∈ L6(Ω), consequence of the of the property

v ∈ D1,2(Ω) and Sobolev inequality; see Remark 2. With such a little information,

it is, basically, hopeless to show fundamental properties of the solution that are yet

expected on physical grounds, such as (i) balance of energy equation, namely, (14) with

the equality sign, and (ii) uniqueness for “small” data.

The main objective of this subsection is to show that, in fact, this undesired

feature can be removed by using another and completely different approach. The ap-

proach, introduced in [43; 49], consists in formulating the original problem as a non-

linear equation in a suitable Banach space, and then use the mod 2 degree for proper

Fredholm maps of index 0 to show just under the conditions on the data stated in Defi-

nition 1, the existence of a corresponding weak solution possessing “better” properties

at “large” distances. As a consequence, one proves that these weak solutions satisfy,

in addition, the requirements (i) and (ii) above. Moreover, this abstract setting shows

itself appropriate for the study of other important properties of solutions, including

generic properties, and steady and time-periodic bifurcation; see Sections 8 and 9.

In order to give a precise statement of the main results, it is appropriate to

introduce the necessary functional setting. To this end, let

R(u) := e1 × x · ∇u− e1 × u

and set

X(Ω) = {u ∈ D1,2
0 (Ω) : ∂1u, R(u) ∈ D−1,2

0 (Ω)} , (16)

where ∂1u ∈ D−1,2
0 (Ω) means that there is C > 0 such that

|(∂1u,ϕ)| ≤ C |ϕ|1,2 , for all ϕ ∈ D(Ω) ,

and, therefore, by the Hahn-Banach theorem ∂1u can be uniquely extended to an

element of D−1,2
0 (Ω) that will still be denoted by ∂1u. Analogous considerations hold

for R(u). It can be shown [49, Proposition 65] that when endowed with its “natural”

norm

‖u‖X := |u|1,2 + |∂1u|−1,2 + |R(u)|−1,2 ,

X(Ω) becomes a reflexive, separable Banach space. Obviously,X(Ω) is a strict subspace

of D1,2
0 (Ω).

The primary objective is to prove existence of weak solution in the space X(Ω).

In this respect, one observes that all classical approaches mentioned earlier on, furnish

weak solutions in D1,2
0 (Ω) which embeds only in L6(Ω); see Remark 2. The fundamental

property of X(Ω), expressed in the following lemma, is that it embeds in a much

“better” space.
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Lemma 2 Let Ω ⊂ R3 be an exterior domain and assume u ∈ D1,2
0 (Ω) with ∂1u ∈

D−1,2
0 (Ω). Then, u ∈ L4(Ω), and there is C1 = C1(Ω) > 0 such that

‖u‖4 ≤ C1 |∂1u|
1

4

−1,2|u|
3

4

1,2 . (17)

Thus, in particular, X(Ω) ⊂ L4(Ω).

Proof. Obviously, if u ≡ 0 there is nothing to prove, so one shall assume u 6≡ 0. The

proof for an arbitrary exterior domain is somewhat complicated by several technical

issues; see [43, Proposition 1.1 with proof on pp. 8–13]. However, if Ω ≡ R3 it becomes

simpler and will be sketched here. (The inequality proved in [43, Proposition 1.1] is,

in fact, weaker than (17). However, one can apply to eq. (1.31) of [43] almost verbatim

the argument given in the current proof after (23), and show the stronger form (17).)

For a given g ∈ C∞
0 (R3), consider the following problem

∆ϕ− µ∂1ϕ = g + ∇p , divϕ = 0 , in R3 , (18)

where µ > 0. By [47, Theorem VII.4.1], problem (18) has at least one solution such

that

ϕ ∈ Ls1(R3) ∩D1,s2(R3) ∩D2,s3(R3) , ∂1ϕ ∈ Ls3(R3)

p ∈ Ls4(R3) ∩D1,s3(R3)
(19)

for all s1 > 2, s2 > 4/3, s3 > 1, s4 > 3/2, which satisfies the estimate

µ1/4|ϕ|1,2 ≤ C‖g‖4/3 , (20)

with C = C(s1, . . . , s4). Using (18)–(19), and recalling that by the Sobolev inequality

D1,2
0 (R3) ⊂ L6(R3), one shows after integration by parts

(u, g) = (u, ∆ϕ− µ∂1ϕ− ∇p) = −(∇u,∇ϕ) − µ(u, ∂1ϕ) . (21)

The following identity is valid for all u ∈ D1,2
0 (R3) with ∂1u ∈ D−1,2

0 (R3) , and ψ ∈
D1,2

0 (R3) with ∂1ψ ∈ L
6

5 (R3), and can be shown by the arguments from [43, p. 12–13]

(u, ∂1ψ) = −〈∂1u,ψ〉 .

In view of (19) we may use the latter in (21) to get

(u, g) = −(∇u,∇ϕ) + µ〈∂1u,ϕ〉 .

which implies

|(u, g)| ≤ (|u|1,2 + µ |∂1u|−1,2) |ϕ|1,2 . (22)

Replacing (20) into this latter inequality, one finds

|(u, g)| ≤ C
(
µ

3

4 |∂1u|−1,2 + µ− 1

4 |u|1,2

)
‖g‖ 4

3

.

Since g is arbitrary in C∞
0 (R3), it follows that u ∈ L4(R3) and, furthermore,

‖u‖4 ≤ C
(
µ

3

4 |∂1u|−1,2 + µ− 1

4 |u|1,2

)
, for all µ > 0. (23)

By a simple calculation we show that the right-hand side of (23) as a function of µ

attains its minimum at
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µ = |u|1,2/(3 |∂1u|−1,2) ,

which, once replaced in (23) proves (17), provided |∂1u|−1,2 6= 0. To show that this is

indeed the case, suppose the contrary. Then (∂1u,ϕ) = 0 for all ϕ ∈ D(R3), so that

there is p ∈ D1,2(R3) such that ∂1u = ∇p in R
3; see, e.g., [47, Lemma III.3.1]. From

divu = 0, we deduce ∆p = 0 in R3 in the sense of distributions, which, by the property

of p in turn furnishes ∂1u = ∇p ≡ 0, and this contradicts the fact that u ∈ L6(R3).

The proof is thus completed. �

One is now in a position to state the following general existence result.

Theorem 1 For any λ 6= 0, T ≥ 0, f ∈ D−1,2
0 (Ω) and v∗ ∈ W 1/2,2(∂Ω) with Φ = 0

there exists at least one weak solution, v, to (8)–(7) that in addition satisfies v−U ∈
X(Ω), with U given in Lemma 1. Moreover, v obeys the estimate

‖v −U‖X ≤ C1

(
|f |−1,2 + |f |3−1,2

)
+ C2

(
‖v∗ + V‖1/2,2,∂Ω) + ‖v∗ + V‖3

1/2,2(∂Ω)

)
(24)

where C1 = C1(λ, T , Ω), and C2 = C2(λ, T , Ω,M), whenever ‖v∗‖1/2,2(∂Ω) ≤M

A full proof of Theorem 1 is given in [49, Theorem 86(i)]. Here it shall be repro-

duced the main ideas leading to the result, referring the reader to the cited reference

for all missing details.

The first step is to write (12) as a nonlinear equation in the space D−1,2
0 (Ω). To

reach this goal, for fixed λ, T one defines the generalized Oseen operator

O : u ∈ X(Ω) 7→ O(u) ∈ D−1,2
0 (Ω) (25)

where

〈O(u),ϕ〉 := −(∇u,∇ϕ) + λ〈∂1u,ϕ〉 + T 〈R(u),ϕ〉 , ϕ ∈ D1,2
0 (Ω) . (26)

Likewise, one introduces the operators N , and K from X(Ω) to D−1,2
0 (Ω) as follows:

〈N (u),ϕ〉 := λ(u · ∇ϕ,u)

〈K (u),ϕ〉 := −λ[(U · ∇u,ϕ) + (u · ∇U ,ϕ)]
ϕ ∈ D1,2

0 (Ω) . (27)

(The dependence of the relevant operators on the parameters λ and T will be em-

phasized only when needed; see Sections 8 and 9.) Finally, let F denote the uniquely

determined element of D−1,2
0 (Ω) such that, for all ϕ ∈ D1,2

0 (Ω),

〈F ,ϕ〉 := (∇U ,∇ϕ) − λ(∂1U −U · ∇U ,ϕ) − T (R(U ),ϕ) + 〈f ,ϕ〉 . (28)

In view of Lemma 1 and Lemma 2, and with the help of Hölder inequality it is easy to

show that the operators O , N , and K , and the element F are well defined.

Setting

L := O + K , (29)

the objective is to solve the following problem: For any F ∈ D−1,2
0 (Ω), find u ∈ X(Ω)

such that

L (u) + N (u) = F . (30)

It is plain that, if this problem is solvable, then v = u+U is a weak solution satisfying

the statement of Theorem 1.
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The strategy to solve the above problem consists in showing that the map M :=

L +N : X(Ω) 7→ D−1,2
0 (Ω) is surjective. To reach this goal, one may use a very general

result furnished in [49], based on the mod 2 degree of proper C2 Fredholm maps of

index 0 due to Smale [105]. More precisely, from [49, Theorem 59(a)] it follows, in

particular, the following.

Proposition 1. Let Z, Y be Banach spaces with Z reflexive. Let L : Z 7→ Y , N : Z 7→
Y and set M = L+N . Suppose

(i) M is weakly sequentially continuous (that is, if zn → z weakly in Z, then

M(zn) → M(z) weakly in Y );

(ii) N is quadratic (that is, there is a bilinear bounded operator B : Z × Z 7→ Y

such that N(z) = B(z, z) for all z ∈ Z);

(iii) L maps homeomorphically Z onto Y ;

(iv) The Fréchet derivative of N is compact at every z ∈ Z;

(v) There is φ : R+ 7→ R+ mapping bounded set into bounded set, with φ(s) → 0

as s→ 0, such that

‖z‖Z ≤ φ (‖M(z)‖Y ) .

Then M is surjective.

This proposition will be applied with Z ≡ X(Ω), Y ≡ D−1,2
0 (Ω), L ≡ L , and

N ≡ N . With this in mind, one begins to show the following.

Lemma 3 The operator N is quadratic, and M := L + N is weakly sequentially

continuous.

Proof. The first property is obvious, since

N (u) = λB(u,u) (31)

where, for wi ∈ X(Ω), i = 1, 2,

〈B(w1,w2),ϕ〉 := (w1 · ∇ϕ,w2) , all ϕ ∈ D1,2
0 (Ω). (32)

Suppose next uk → u weakly in X(Ω); one has to show that M(uk) → M(u) weakly

in D−1,2
0 (Ω). This amounts to prove that

lim
k→∞

〈M(uk),ϕ〉 = 〈M(u),ϕ〉 , for all ϕ ∈ D(Ω). (33)

In fact, on one hand, being D1,2
0 (Ω) reflexive [47, Exercise II.6.2], the generic linear

functional acting on W ∈ D−1,2
0 (Ω) is of the form 〈W ,ϕ〉, for some ϕ ∈ D1,2

0 (Ω). On

the other hand, it is

|M(uk)|−1,2 ≤ C0 ,

C0 > 0 independent of k, as is at once established from (26)–(27) and the uniform

boundedness of ‖uk‖X. Now, to show (33) it is observed that the latter implies that

there is M1 > 0 independent of k, such that

|uk|1,2 ≤ C .

Thus, along a subsequence {uk′},
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lim
k′→∞

(∇uk′ ,∇ϕ) = (∇u,∇ϕ) ; lim
k′→∞

(∂1uk′,ϕ) = (∂1u,ϕ) ;

lim
k′→∞

(R(uk′),ϕ) = (R(u),ϕ) , for all ϕ ∈ D(Ω) .
(34)

Moreover, by the embedding D1,2
0 (Ω) ⊂ W 1,2(ΩR), R > 1, Rellich compactness theo-

rem, and Cantor diagonalization method one can also show

lim
k′→∞

‖uk′ − u‖4,ΩR
= 0 , for all R > 1 , (35)

see [47, Proposition 66] for details. The desired property (33) is then a simple conse-

quence of (26), (27), (34), (35), and Hölder inequality. �

The following result also holds.

Lemma 4 Let u ∈ X(Ω). Then,

〈∂1u,u〉 = 〈R(u),u〉 = 0

Proof. If u ∈ D(Ω) the proof is trivial, being a consequence of simple integration by

parts. However, if u is just in X(Ω) the claim is not obvious since it is not known

whether D(Ω) is dense in X(Ω). As a consequence, one has to argue in a different

and more complicated way, especially to show the property for R. The proof becomes

then lengthy, technical and tricky. For this reason it will be omitted and the reader

is referred to [43, pp. 12–13] for the first property and to [49, Proposition 70] for the

second one. �

The above lemma is crucial for the next result –a particular case of that shown

in [49, Proposition 78]– ensuring the validity of condition (iii) in Proposition 1.

Lemma 5 The operator L := O + K is a linear homeomorphism of X(Ω) onto

D−1,2
0 (Ω). Moreover, there is a constant C = C(λ, T , Ω) such that

‖u‖X ≤ C |L (u)|−1,2 . (36)

Proof. Referring to the cited reference for a full proof, here only the leading ideas will

be sketched. As shown in [78, Theorem 2.1] and [49] the generalized Oseen operator O

is a homeomorphism of X(Ω) onto D−1,2
0 (Ω), and, moreover,

|u|1,2 + |∂1u|−1,2 + |R(u)|−1,2 ≤ C |O(u)|−1,2 .

Therefore, by classical results on Fredholm operators, it is enough to show that (i) K

is compact, and (ii) N(L ) = {0}. Let {uk} ⊂ X(Ω) be a bounded sequence and let ΩR

contain the support of U . Observing that X(Ω) ⊂ W 1,2(ΩR), the Rellich compactness

theorem implies that there is a subsequence of {uk} that is Cauchy in L4(ΩR). Since

by (27)1 and Hölder inequality, for all ϕ ∈ D1,2
0 (Ω)

|〈K (uk′),ϕ〉 − 〈K (uk
′′ ),ϕ〉| ≤ 2λ ‖U‖4‖uk′ − uk

′′‖4,ΩR
|ϕ|1,2 ,

from Lemma 1(i) one infers (along a subsequence)

lim
k′,k

′′
→∞

|K (uk′) − K (uk′′ )|−1,2 = 0 ,
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which proves (i). To show (ii), it must shown that

〈O(u) + K (u),ϕ〉 = 0 for all ϕ ∈ D1,2
0 (Ω) =⇒ u = 0 . (37)

Since U ∈ W 1,2(Ω) is of bounded support with divU = 0, and u ∈ D−1,2
0 (Ω), by an

easily justified integration by parts we show (U · ∇u,u) = 0. So that by replacing u

for ϕ in (37) and using this property along with (26), (27)2 and Lemma 4, one deduces

|u|21,2 − λ(u · ∇U ,u) = 0 .

As a result, (37) is a consequence of the latter and of (10) in Lemma 1. �

The following lemma guarantees condition (iv) in Proposition 1; see [49, Propo-

sitions 79].

Lemma 6 The Fréchet derivative, N ′(u), of N is compact at each u ∈ X(Ω).

Proof. From (27)1 it follows that

λ−1[N ′(u)]w = B(u,w) + B(w,u) ,

with B defined in (32). Let {vk} ⊂ X(Ω) be such that

‖vk‖X ≤ C ,

with C independent of k ∈ N and so, by Lemma 2, one gets, in particular

‖vk‖4 + |vk|1,2 ≤ C1 , (38)

with C1 = C1(Ω) > 0. Since X(Ω) is reflexive, there exist v ∈ X(Ω) and a subsequence

{vk′} ⊂ X(Ω) converging weakly in X(Ω) to v. As in the proof of Lemma 3 it can also

be shown from (38) that (possibly, along another subsequence)

lim
k′

‖vk − v‖4,ΩR
= 0, for all sufficiently large R ; (39)

see also [49, Proposition 66]. From (32) and Hölder inequality one finds

|〈B(u,vk′) − B(u,v),ϕ〉| = |〈B(u,vk′ − v),ϕ〉|

≤
(
‖u‖4,ΩR

‖v − vk′‖4,ΩR
+ ‖u‖4,ΩR‖v − vk′‖4,ΩR

)
|ϕ|1,2 ,

for all sufficiently large R. Using (38) and (39) into this relation gives

lim
k′→∞

|B(u,vk′) − B(u,v)|−1,2 ≤ C1‖u‖4,ΩR ,

where C1 > 0 is independent of k′. However, R is arbitrarily large and so, by the

absolute continuity of the Lebesgue integral, it may be concluded that

lim
k′→∞

|B(u,vk′) − B(u,v)|−1,2 = 0 . (40)

In a completely analogous way, one shows

lim
k′→∞

|B(vk′,u) − B(v,u)|−1,2 = 0 . (41)

From (40) and (41) it then follows that the operator B(u, ·), and hence N ′(u), is

compact at each u ∈ X(Ω). �
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In order to apply Proposition 1 to the operator M, it remains to show condi-

tion (v), which amounts, basically, to find “good” a priori estimates for the equation

M(u) = F .

Lemma 7 There is a constant C > 0 such that all solution u ∈ X(Ω) to (30) satisfy

‖u‖X ≤ C (|F |−1,2 + |F |3−1,2) . (42)

Proof. Also using (26), (27)2, (10) and Lemma 4, one deduces

〈L (u),u〉 = |u|21,2 − λ(u · ∇U ,u) ≥ 1
2
|u|21,2 , 〈F ,u〉 ≤ |F |−1,2|u|1,2. (43)

Moreover, it is easily checked that for all u ∈ D(Ω),

(u · gradu,u) = 0 . (44)

Now, by Lemma 4, X(Ω) ⊂ L4(Ω) and so, by [47, Theorem III.6.2], one can find a

sequence {uk} ⊂ D(Ω) converging to u in D1,2
0 (Ω)∩L4(Ω). Since, by Hölder inequality,

the trilinear form (u · gradw,v) is continuous in L4(Ω) × D1,2(Ω) × L4(Ω) one may

conclude that (44) continues to hold for all u ∈ X(Ω), which gives

〈N (u),u〉 = 0 . (45)

Thus, from this and (43) one obtains

|u|1,2 ≤ 2|F |−1,2 . (46)

Since L (u) = F −N (u), from Lemma 5 follows that

‖u‖X ≤ C (|F |−1,2 + |N (u)|−1,2) . (47)

Moreover, by Lemma 2

λ−1|〈N (u),ϕ〉| = |(u · ∇ϕ,u)| ≤ ‖u‖2
4| |ϕ|1,2 ≤ C1 |∂1u|

1

2

−1,2|u|
3

2

1,2 |ϕ|1,2 ,

so that, by virtue of (46) and (47), one finds

‖u‖X ≤ C2 (|F |−1,2 + |F |
3

2

−1,2‖u‖
1

2

X) .

Using Young’s inequality in the latter allows one to deduce the validity of (42), and

the proof of the lemma is completed. �

Proof of Theorem 1. The proof of the first statement follows from Proposition 1,

and Lemmaa 3, and Lemmas 5–7. Furthermore, by property (11) of U and (28), one

finds

|F |−1,2 ≤ |f |−1,2 + C1 ‖v∗ + V‖1/2,2(∂Ω) , (48)

where C1 = C1(λ, τ, Ω,M) whenever ‖v∗‖1/2,2(∂Ω) ≤ M . Estimate (24) is then a con-

sequence of Lemma 7 and (48). �
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Open Problem 1 Property (10) of the extension U is fundamental for the esti-

mate (46). As mentioned earlier on, (10) is only known if the flux Φ is of “small”

magnitude. While by a procedure similar to [25; 63; 50] it is probably possible to

show that such a condition on Φ is also necessary for the existence of an extension

with the above property, one may nevertheless wonder if a small |Φ| would indeed be

necessary if the existence problem is approached by other methods. In this respect,

by combining a contradiction argument of Leray with properties of the Bernoulli’s

function in spaces of low regularity, in their deep work [74] Korobkov, Pileckas &

Russo have shown existence without restrictions on |Φ|, at least for flow (and data)

that are axisymmetric along the direction of ξ. Whether such a result is true in

general remains open.

The following result shows an important property of weak solutions in the class

X(Ω) and so, in particular, applies to those constructed in Theorem 1.

Theorem 2 Let f ∈ D−1,2
0 (Ω) and v∗ ∈ W 1/2,2(∂Ω), and let v be a corresponding

weak solution with v −U ∈ X(Ω). Then, v satisfies the energy equality, namely, (13)

with the equality sign. If, in addition, f ∈ L2(Ω) and v∗ ∈W 3/2,2(∂Ω) then the latter

takes the form of the classical equation of energy balance:

−2‖D(v)‖2
2 +

∫

∂Ω

{(v∗ + V) · T (v, p) − λ

2
(v∗ + V)2v∗} · n = 〈f ,v〉 (49)

Proof. From (30), with F given in (28), one deduces

L (u),u〉 + 〈N (u),u〉 = 〈F ,u〉 .

Employing in this equation (43) and (45), one obtains

|u|21,2 − λ (u · ∇U ,u) − 〈F ,u〉 = 0 ,

which, recalling the definition of F in (28), shows that u obeys (13) with the equality

sign. The second part of the theorem is shown exactly like in [47, pp. 770–771] and will

be omitted. �

Open Problem 2 The natural question arises whether any weak solution, v, cor-

responding to data satisfying merely the “natural” minimal conditions of Theorem

1, is such that v − U ∈ X(Ω), and, in particular, obeys the equation of energy

balance. In a remarkable work [59] Heck, Kim & Kozono have shown that this is

indeed the case, at least when T = 0 (the body is not spinning), v∗ ≡ 0, and f is

assumed slightly more regular, namely, f ∈ D−1,2
0 (Ω). Whether this result continues

to hold for T 6= 0 is not known.
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5 Regularity

It is expected that if the data f , v∗ and the boundary ∂Ω are sufficiently smooth,

then the corresponding weak solution is smooth as well. In this respect, one has the

following very general result about interior and boundary regularity.

Theorem 3 Let v be a weak solution to (8)–(7). Then, if

f ∈Wm,q
loc (Ω), m ≥ 0 ,

where q ∈ (1,∞) if m = 0, while q ∈ [3/2,∞) if m > 0, it follows that

v ∈Wm+2,q
loc (Ω), p ∈Wm+1,q

loc (Ω),

where p is the pressure associated to v in Remark 1. Thus, in particular, if

f ∈ C∞(Ω), (50)

then

v, p ∈ C∞(Ω). (51)

Assume, further, Ω of class Cm+2 and

v∗ ∈Wm+2−1/q,q(∂Ω), f ∈Wm,q(ΩR) ,

for some R > 1 and with the values of m and q specified earlier. Then,

v ∈Wm+2,q(ΩR), p ∈Wm+1,q(ΩR).

Therefore, in particular, if Ω is of class C∞ and

v∗ ∈ C∞(∂Ω), f ∈ C∞(ΩR), (52)

it follows that

v, p ∈ C∞(ΩR). (53)

The proof of this result is rather complicated and the interested reader is referred

to [47, Theorems X.1.1 and XI.1.2]. However, if one assumes (50) [respectively, (52) and

Ω of class C∞] then the proof of (51) [respectively, (53)] can be obtained by classical

results for the Stokes problem in conjunction with a simple boot-strap argument and

will be reproduced here.

To show this, one needs the following classical regularity results for weak so-

lutions to the Stokes problem, a particular case of those furnished in [47, Theorems

IV.4.1 and IV.5.1], to which the reader is also referred for their proofs.

Lemma 8 Let (w, τ ) ∈W 1,q
loc (Ω) × Lq

loc(Ω), 1 < q <∞, with divw = 0 in Ω, satisfy

−(∇w,∇ψ) = [F,ψ] − (τ, divψ) , for all ψ ∈ C∞
0 (Ω) (54)

Then, if F ∈Wm,q
loc (Ω), m ≥ 0, necessarily (w, τ ) ∈Wm+2,q

loc (Ω)×Wm+1,q
loc (Ω). Moreover,

assume w ∈ W 1,q(ΩR) for some R > 1, and w = w∗ at ∂Ω. Then, if F ∈ Wm,q(ΩR),

w∗ ∈ Wm+2−1/q,q(∂Ω), necessarily (w, τ ) ∈ Wm+2,q(Ωr) × Wm+1,q
loc (Ωr), for any r ∈

(1, R).
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With this result in hand, it can be proved that (50) implies (51). From Remark 1, the

weak solution v and the associated pressure field p satisfy (54) with

F := −λ∂1v − T (e1 × x · ∇v − e1 × v) + λv · ∇v + f .

Then, by assumption, the embedding

D1,2
0 (Ω) ⊂W 1,2

loc (Ω) ⊂ L6
loc(Ω) ,

and the Hölder inequality one has that F ∈ L
3/2
loc (Ω). From the first statement in Lemma

8, it can then be deduced v ∈ W 2,3/2(Ω)loc, p ∈ W
1,3/2
loc (Ω), and, moreover, that (v, p)

satisfy (8)1 a.e. in Ω. Next, because of the embeddingW
2,3/2
loc (Ω) ⊂W 1,3

loc (Ω) ⊂ Lr
loc(Ω),

arbitrary r ∈ [1,∞), one obtains the improved regularity property F ∈ W 1,s
loc (Ω), for

all s ∈ [1, 3/2). Using once again Lemma 8, one infers v ∈ W 3,s
loc (Ω) and p ∈ W 2,s

loc (Ω)

which, in particular, gives further regularity for F. By induction, one then proves the

desired property v, p ∈ C∞(Ω). The proof of the boundary regularity is performed by

an entirely similar argument and, therefore, will be omitted.

6 Uniqueness

This section is dedicated to the investigation of the uniqueness property of weak so-

lutions. Basically, the main known results depend on the summability and regularity

assumptions made at the outset on the data f and v∗. The following theorem shows,

in particular, that every solution in Theorem 1 is unique in its own class of existence,

provided the size of the data is sufficiently restricted.

Theorem 4 Assume vi, i = 1, 2, are weak solutions with vi−U ∈ X(Ω), correspond-

ing to the same f ∈ D−1,2
0 (Ω), v∗ ∈ W 1/2,2(∂Ω). Then, there is C = C(λ, T , Ω) such

that if

|f |−1,2 + ‖v∗‖1/2,2(∂Ω) < C , (55)

necessarily v1 ≡ v2.

Proof. Setting ui = vi − U , i = 1, 2, with U given in Lemma 1, from (25)–(28) and

the assumption one finds

L (ui) + N (ui) = F , i = 1, 2 . (56)

Therefore, from Lemma 2, Lemma 7 and (48), one infers in particular

‖ui‖4 ≤ C1(|f |−1,2 + |f |3−1,2) + C2(‖v∗ + V‖1/2,2(∂Ω) + ‖v∗ + V‖3
1/2,2(∂Ω)) , (57)

where C1 = C1(λ, T , Ω), and C2 = C2(λ, T , Ω,M), whenever ‖v∗‖1/2,2(∂Ω) ≤ M . Ar-

bitrarily fix the number M once and for all. Setting u := u1 − u2, from (56) one

obtains

L (u) = −B(u,u1) −B(u2,u) , (58)
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where B is defined in (32). Thus, observing that

|B(u,u1) + B(u2,u)|−1,2 ≤ ‖u‖4(‖u1‖4 + ‖u2‖4)

from (58), Lemma 2 and Lemma 6 one has, in particular,

‖u‖4 [1 − C3 (‖u1‖4 + ‖u2‖4)] ≤ 0 ,

with C3 = C3(λ, T , Ω). The result then follows from this inequality and (57). �

The natural question arises of whether the solutions constructed in Theorem 1

are unique in the class of weak solutions, that is, obeying just the requirements stated

in Definition 1. The answer to this question is positive if f is assumed to possess

“good” summability properties at large distances, and v is sufficiently regular. Actually,

this property is a particular consequence of the following result for whose proof the

reader is referred to [47, Theorem XI.5.3], once one takes into account that, by Sobolev

inequality, L
6

5 (Ω) ⊂ D−1,2
0 (Ω), and that D−1,2

0 (Ω) ⊂ D−1,2
0 (Ω).

Theorem 5 Let

f ∈ L6/5(Ω) ∩ L4/3(Ω), v∗ ∈W 5/4,4/3(∂Ω) .

Then, there exists C = C(Ω, λ, T ) such that, if

‖f‖6/5 + ‖v∗ + V‖7/6,6/5(∂Ω) < C , (59)

v is the only weak solution corresponding to the above data.

Open Problem 3 In general, it is not known whether solutions of Theorem 1 are

unique in the class of weak solutions, when f and v∗ merely satisfy the assumptions

of that theorem (and are sufficiently small).

In connection with this problem, it is worth remarking that in the special case T = 0,

v∗ ≡ 0, and with f slightly more regular (namely, f ∈ D−1,2
0 (Ω)) the result is shown

in [59, Theorem 2.3].

7 Asymptotic Behavior

As shown in previous sections, some fundamental attributes of weak solution expected

on physical grounds, such as verifying the energy balance and being unique for small

data, can be established if one has enough information on their summability properties

in a neighborhood of infinity, like the one provided by Theorem 1. However, there are

other significant aspects that require a sharp pointwise knowledge of the solution at

large distances, which in principle is not necessarily guaranteed just by the mild asymp-

totic information furnished in that theorem. These aspects include, for instance, the

presence of a stationary, unbounded wake region “behind” the body, and a “fast” decay
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of the vorticity outside the wake region, in support of boundary layer theory. Proving

(or disproving) these properties constituted one of the most challenging questions in

mathematical fluid dynamics since the pioneering article of Leray.

The case T = 0 was eventually settled in the mid seveties (about forty years

after Leray’s work) thanks to the effort of Robert Finn, Konstantin I. Babenko and

their collaborators. Their contributions will be briefly summarized in the following

two subsections. The case T 6= 0 presents much more difficulties, and will be treated

successively in Subsection 7.3, by means of a different approach, originally introduced

in [41], that allows for a rather complete description of the pointwise asymptotic flow

behavior also in that more general situation.

7.1 Finn’s Contribution

In the late fifties/mid sixties, in a series of remarkable papers [26; 27; 28; 29; 30], Robert

Finn proved the following fundamental results. Let (v, p) be any (sufficiently smooth)

solution to (8)–(7) with T = 0 and with f of bounded support, such that |v(x)| ≤
C |x|−α, some α > 1/2 and all “large” |x|. Then the pointwise asymptotic structure

of (v, p) can be sharply evaluated. In particular, combining the integral representation

of the solution, obtained via the (time-independent) Oseen fundamental tensor, E,

along with a careful estimate of the latter, Finn showed that these solutions exhibit

a paraboloidal “wake region”, R, with the property that the velocity field, v, inside

R decays pointwise slower than it does outside R. More precisely, he proved that v

[respectively, ∇v] admits an asymptotic expansion with E [respectively, ∇E] being the

leading term. (Finn left open the question of the asymptotic behavior of the second

derivatives of v [26], a problem that was finally solved another forty year later by

Deuring [13].) Finn called such solutions “Physically Reasonable” (PR) [29, Definition

5.1], and demonstrated their existence on condition that the magnitude of the data is

sufficiently restricted [29, Theorem 4.1]. Later on, one of his students, David Clark,

showed that the vorticity field of any PR solution decays exponentially fast outside

R and far from the body [10]. Thanks to its sharp asymptotic (and local regularity)

properties, it is easy to show that any PR solution (regardless of the size of the data) is

also weak, namely, v ∈ D1,2(Ω). However, given that the latter is the only information

that weak solutions carry in a neighborhood of infinity, the converse property is by no

means obvious, to the point that some author even questioned its validity [61, p. 12].

All this seemed to cast profound doubts about the physical relevance of Leray’s weak

solutions.

7.2 Babenko’s Contribution

The relation between weak and PR solutions was eventually addressed by Babenko

[2]. Combining Lizorkin’s multipliers theory with anisotropic Sobolev-like inequalities
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and the representation formula for the solution employed by Finn, he was able to

show that, if the boidy force f is of bounded support, every weak solution is, in fact,

physically reasonable in the sense of Finn. Babenko’s paper can be divided into two

main parts. In the first one, he shows, by a very elegant and straightforward argument,

that any weak solution, v, corresponding to the given data must be in L4(Ω), with

corresponding pressure field in L2(Ω). The second part of the paper is aimed to show

that, actually, v ∈ Lq(Ω), for any q ∈ (2, 4]. Once this property is established, then it is

relatively simple to prove that the weak solution decays like |x|−α for some α > 1/2 and

therefore is also PR. It must be noted that Babenko’s proof of these further summability

properties has aspects that are not fully transparent. Also for this reason, a distinct and

more direct proof of Babenko’s result was given later on by Galdi [37] and, successively

and independently, by Farwig & Sohr [17].

7.3 A General Approach

It must be emphasized one more time that the results reported in the previous two

subsections refer to the case T = 0, that is, the body is not spinning. If one allows T 6= 0,

then the detailed study of the asymptotic properties of a weak solution becomes even

more complicated, for several reasons. In the first place, the linear momentum equation

(8)1 contains a term that grows linearly fast at large spatial distances. As a consequence,

the fundamental tensor of the linearized equations, T, is no longer the classical Oseen

tensor E mentioned above, let alone a “perturbation” of it, but, rather, a much more

complicated one; see [23, Section 2]. Thus, the representation of the solution that in

both contributions of Finn and Babenko plays a fundamental role in the determination

of the pointwise behavior, becomes much more involved and, actually, useless for that

matter. In fact, as shown in [23, Proposition 2.1], unlike E, the tensor T does not satisfy

uniform estimates at large spatial distances.

In view of these issues, in [41] Galdi introduced a completely different approach

to the study of the asymptotic structure of a weak solution, that was further general-

ized and improved in [42; 45; 48]. In this approach, the weak solution v is viewed as

limit as t → ∞ along sequences of the (unique) solution, w(x, t), to a suitable initial

value problem. It can be shown that, in turn, w admits a somewhat simple space-time

representation in terms of the Oseen fundamental solution to the time-dependent Os-

een equation. This fact allows one to obtain a number of sharp spatial estimates for w

uniformly in time, which are thus preserved in the limit t→ ∞, and therefore continue

to hold for the weak solution v.

Referring to [47, §§X.6, X.8, XI.4, XI.6] for a full account of the (technically

complicated and lengthy) proofs of all the above results, here it will only be provided

an outline of the main steps of the procedure used in establishing them in the case

T 6= 0.



25

The first step consists in determining sharp summability properties of a weak

solution in a neighborhood of infinity, under appropriate hypothesis on the data. To

this end, one can show the following result [47, Theorem XI.6.4].

Lemma 9 Assume, for some q0 > 3 and all q ∈ (1, q0], that

f ∈ Lq(Ω) ∩ L3/2(Ω) , v∗ ∈W 2−1/q0,q0(∂Ω)∩W 4/3,3/2(∂Ω) .

Then, every weak solution v to problem (8)–(7) corresponding to f , v∗, and the associ-

ated pressure field p (possibly modified by the addition of a constant, see also Remark

1), satisfy the following summability properties

v ∈ Lr(Ω) ∩D1,s(Ω) ,
∂v

∂x1
∈ Lt(Ω) , p ∈ Lσ(Ω) ,

for all r ∈ (2,∞], s ∈ (4/3,∞], t ∈ (1,∞], σ ∈ (3/2,∞]. If, in addition, f ∈W 1,q0(Ω),

v∗ ∈W 3−1/q0,q0(∂Ω), then we have also

v ∈ D2,τ (Ω) , p ∈ D1,τ (Ω) ,

for all τ ∈ (1,∞].

The next objective is to “translate” the above global asymptotic information

into a pointwise one. For simplicity, it shall be assumed that f is of bounded support,

which also implies, with the help of Theorem 3 that (v, p) ∈ C∞(Ωρ) for sufficiently

large ρ.

Thus, in the second step, one uses a standard “cut-off” procedure to rewrite

(suitably) (8) in the whole space R3. More specifically, let ψ be a smooth function that

is 0 in the neighborhood of ∂Ω that contains the support of f , and 1 sufficiently far

from it. Moreover, let Z ∈ C∞
0 (Ω) such that divZ = −∇ψ · v in Ω. (Such a field Z

exists, as shown in [47, Theorem III.3.3].) From (8) one can deduce that u := ψ v−Z,

and p̃ := ψ p obey the following problem

∆u+ λ∂1u+ T (e1 × x · ∇u −e1 × u)

= λdiv (ψ v ⊗ ψ v) + ∇p̃+ F c

divu = 0





in R3 (60)

where F c is smooth and of bounded support. At this point, the “classical” procedure

would be to write the solution u in terms of the fundamental tensor solutions, T,

associated with problem (60). However, as remarked earlier on, this would not lead

anywhere due to the poor properties of T. Therefore, we argue differently.

In the third step one performs a time-dependent change of coordinates which

transforms (60) into a suitable initial-value problem. To this end, for t ≥ 0, let

Q(t) =




1 0 0

0 cos(T t) − sin(T t)
0 sin(T t) cos(T t)


 ,

and define
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y := Q(t) · x ,
w(y, t) := Q(t) · u(Q>(t) · y) , π(y, t) := p̃(Q>(t) · y) ,

V (y, t) := Q(t) · [ψρv](Q>(t) · y) , H(y, t) := Q(t) · F c(Q
>(t) · y) .

From (60) and Lemma 9 it then follows that

∂w

∂t
= ∆w + λ

∂w

∂y1
−∇π − λdiv [V ⊗ V ] −H

∇ ·w = 0





in R3 × (0,∞) ,

lim
t→0+

‖w(·, t)− u‖r = 0 , all r ∈ (2,∞) .

(61)

Notice that equation (61)1 does not contain the linearly growing term. The solution to

the Cauchy problem (61) has the following representation:

w(y, t) = (4πt)−3/2

∫

R3

e−|y−z+λ te1|
2/4tu(z) dz

−
∫ t

0

∫

R3

Γ (y − z, t− τ ) · (R∇ · [V ⊗ V ](z, τ ) +H(z, τ )) dz dτ .

(62)

where Γ (ξ, s), (ξ, s) ∈ R3 × (0,∞) is the well-known Oseen fundamental solution to

the time-dependent Stokes system [47, §VIII.3].

In the final step one utilizes into (62) the summability properties for u and V

obtained from Lemma 9 along with the classical pointwise estimates of Γ , to produce a

pointwise estimate for w(x, t), [respectively, ∇w(x, t)] uniformly in t. As a result, the

latter can be shown to provide analogous bounds for u(x) [respectively, ∇u(x)], which

means for the weak solution v(x) [respectively, ∇v(x)] for all “large” |x|.
Once the necessary asymptotic information on v is obtained, analogous esti-

mates on the pressure field can be proved observing that from (8) it follows, for suffi-

ciently large ρ, that

∆p = ∇ ·G in Ωρ ,

∂p

∂n
= g on ∂Ωρ ,

where

G := λv · ∇v ,
g := [∆v + λ(∂1v − v · ∇v) + T (e1 × x · ∇v − e1 × v)] · n |∂Ωρ .

The procedure just outlined is at the basis of the following result whose full

proof is found in [47, Theorems XI.6.1–XI.6.3].

Theorem 6 Let v be a weak solution, corresponding to f of bounded support and

let p be the corresponding pressure field associated to v by Remark 1. Then, for any

δ, η > 0 and all sufficiently large |x|,
v(x) = O

(
|x|−1(1 + λs(x))−1 + |x|−3/2+δ

)
,

∇v(x) = O
(
|x|−3/2(1 + λs(x))−3/2 + |x|−2+η

)
,

p(x) = p0 +O(|x|−2 ln |x|) , for some p0 ∈ R.

(63)

where s(x) := |x|+ x1.



27

Remark 3. This theorem suggests, in particular, that outside any semi-infinite cone, C,

whose axis coincides with the negative x1 axis, the decay is faster than inside C. This

is the mathematical explanation of the existence of the wake “behind” the body, once

one takes into account that the velocity of the center of mass of the body (v0 e) is

directed along the positive axis x1 (λ > 0).

Remark 4. The fundamental tensor solution E(x, y) ≡ {Eij(x, y)} of the Oseen system

(which is obtained by setting T = 0 and disregarding the nonlinear term v · ∇v in

(8)1) is defined through the relations

Eij(x, y) =

(
δij∆− ∂2

∂yi∂yj

)
Φ(x− y) , Φ(ξ) :=

1

4πλ

∫ λ
2
(|ξ|+ξ1)

0

1 − e−τ

τ
dτ .

Now, the first terms on the right-hand side of (63)1 and (63)2, are just (sufficiently

sharp) bounds for E and ∇E at large |x|, respectively; see [47, Section VIII.3]. This

is suggestive of the property that a · E and a · ∇E, for some suitable vector a could

be the leading terms in corresponding asymptotic expansions. Actually, if T = 0, this

property is true, and one can show that, in such a case, the following formula holds for

all sufficiently large |x| [47, Theorem X.8.1]:

v(x) = m · E(x) + V(x) (64)

where m is a constant vector coinciding with the total force, F , exerted by the liquid

on the body and

V(x) = O
(
|x|−3/2+δ

)
, arbitrary δ > 0.

Analogous estimate can be proven for ∇v(x) [47, Theorem X.8.2].

If T 6= 0, in [80, Theorem 1.1], Kyed has shown an asymptotic formula similar

to (64) (and an analogous one for ∇v) where now m = (F · e1)e1, and the quantity

V is a “higher order term” in the sense of Lebesgue integrability at large distances. A

pointwise estimate (probably not optimal) for V is shown in [79, Theorem 5.3.1]. (An

even more detailed asymptotic structure was first shown in [23] for solutions to the

linearized (Stokes) problem and in absence of translational motion.)

This section ends with some important considerations concerning the asymptotic

behavior of the vorticity field, $ := curlv, of a weak solution, v. In this regard, one

can prove the following theorem, due to Deuring & Galdi [14], that ensures that $

decays exponentially fast outside the wake region and sufficiently far from the body.

Theorem 7 Under the same assumptions of Theorem 6 there are constants C,R > 0

such that

|$(x)| ≤ C |x|−3/2e−(λ/4)(|x|+x1)/(1+R) for all x ∈ ΩR .

It is worth stressing the importance of this estimate that agrees with the neces-

sary condition supporting the boundary layer assumption, namely, that sufficiently far

from the body and the wake, the flow is “basically potential”. As a matter of fact, in

the case T = 0 one can prove a sharper result that provides a more accurate description
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of the asymptotic structure of the vorticity field. Precisely, in that case, one has, for

all sufficiently large |x|,
$(x) = ∇Φ×m+O(|x|−2 e−

λ
2
(|x|+x1)) (65)

where

Φ(x) = − λ

4π |x| e
−λ

2
(|x|+x1)

and m is a constant vector denoting the total force exerted by the liquid on the body

[10; 3].

Open Problem 4 In the case T 6= 0, it is not known whether the vorticity admits,

an asymptotic expansion of the type (65), with an appropriate choice of the leading

term.

8 Geometric and Functional Properties for Large Data

Theorem 1 shows that, for any set of data D := (λ, T ,v∗,f ), in the specified spaces,

there exists at least one corresponding weak solution v with the further property that

u := v − U ∈ X(Ω), for a suitable extension field U . Also, Theorem 4 shows that

this is, in fact, the only weak solution in that class, provided the data are suitably

restricted, according to (55). Objective of this section is to analyze the geometric and

functional properties of the solution manifold in the space X(Ω), corresponding to

data of arbitrary magnitude in the class specified in Theorem 1. In order to make the

presentation simpler, throughout this section it is set v∗ ≡ 0.

To reach this goal, one begins to rewrite equation (30) in an equivalent way that

emphasizes the dependence of the operator involved on the parameter p := (λ, T ). One

thus writes L (p,u) for L (u), N (p,u) for N (u) with L , N defined in (25)–(27) and

(29). Moreover, let H = H (p) denote the uniquely determined member of D−1,2
0 (Ω)

such that

〈H ,ϕ〉 := (∇U ,∇ϕ)−λ(∂1U−U ·∇U ,ϕ)−T (R(U ),ϕ) , ϕ ∈ D1,2
0 (Ω).(66)

Thus, for a given f ∈ D−1,2
0 (Ω), (30) can be written as

M (p,u) = f in D−1,2
0 (Ω) (67)

where

M : (p,u) ∈ R
2
+ ×X(Ω) 7→ L (p,u) + N (p,u) + H (p) ∈ D−1,2

0 (Ω) . (68)

The solution manifold associated to (68) is defined next:

M(f ) = {(p,u) ∈ R
2
+ ×X(Ω) satisfying (67)–(68) for a given f ∈ D−1,2

0 (Ω)}

The main goal is then to address the following questions.
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(a) Geometric structure of the manifold M = M(f );

(b) Topological properties of the associated level set

S(p0,f ) := {(p,u) ∈ M(f ), p = p0} ,

obtained by fixing also Reynolds and Taylor numbers.

Clearly, “points” in S(p0,f ) are solutions to equation (67) with a prescribed

p = p0, or, equivalently, to equation (30).

The following theorem collects the principal properties of the set S(p0,f).

Theorem 8 The following properties hold.

(i) S(p0,f) is not empty ;

(ii) For any (p0,f ) ∈ R2
+ ×D−1,2

0 (Ω), S(p0,f) is compact. Moreover, there is N =

N(p0,f) ∈ N such that S(p0,f) is homeomorphic to a compact set of RN ;

(iii) For any p0 ∈ R2
+ there is an open residual set O = O(p0) ⊂ D−1,2

0 (Ω) such that,

for every f ∈ O, S(p0,f ) is constituted by a number of points, κ = κ(p0f),

that is finite and odd ;

(iv) The number κ is constant on every connected component of O .

Proof. As usual, only a sketch of some of the proofs of the above statements will be

given, while referring to the appropriate reference for whatever missing. The statement

(i) is a consequence of Theorem 1. The proofs of the other statements are based on

two fundamental properties of the operator M := L (p0, ·) + N (p0, ·), namely, being

(1) proper, and (2) Fredholm of index 0. Now, Lemma 5 and Lemma 6 guarantee

that the Fréchet derivative of M at every u ∈ X(Ω) is a compact perturbation of

a homeomorphism, which proves the Fredholm property. Properness means that if F

ranges in a compact set, K, of D−1,2
0 (Ω), all possible corresponding solutions u to

M(u) = F belong to a compact set, K∗, of X(Ω). To show that this is indeed the

case, one observes that in view of the continuity of M, K∗ is closed, so that it is enough

to show that from any sequence {un} ⊂ K∗, there is a subsequence (still denoted by

{un}) and u ∈ X(Ω) such that un → u in X(Ω). Let F n = M(un). Since {F n} ⊂ K,

one deduces (along a subsequence)

F n → F in D−1,2
0 (Ω) , for some F ∈ K. (69)

Moreover, being {F n} bounded, by Lemma 7 it follows that {un} is bounded, and so

there exists u ∈ X such that un → u weakly in X(Ω). By Lemma 3 and (69), the

latter implies

M(u) = F , M(un) → M(u) in D−1,2
0 (Ω) . (70)

One next observes that

M(un) −M(u) = L (un − u) + N (un) − N (u) (71)

and also, since N is quadratic (Lemma 3),
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N (un) − N (u) ≡ B(un,un) −B(u,u)

= B(un − u,u) + B(u,un − u) + B(un − u,un − u)

≡ [N ′(u)](un − u) + N (un − u) .

Replacing this identity in (71) one finds

M(un) −M(u)) − [N ′(u)](un − u) = M(un − u) . (72)

In view of (70), the first term on the left-hand side of (72) tends to 0 as n → ∞.

Likewise, since N ′(u) is compact, and hence completely continuous, also the second

term on the left-hand side of (72) tends to 0 as n → ∞, so that properness follows

from this and Lemma 7. The first property in (ii) is then a corollary of what just

proven. As for the second one, we refer to [49, Theorem 93] for a proof. We next come

to show statements (iii) and (iv). In this regard, since M is proper and Fredholm of

index 0, by the mod 2 degree of Smale [105] it is enough to show that there exists

F 0 ∈ D1,2
0 (Ω) with the following properties: (a) the equation M(u) = F 0 has one

and only one solution, u0, and (b) N(M′(u0)) = {0}; see [43, Lemma 6.1]. Now, set

F 0 = 0. From Lemma 7 it follows that the only solution to M(u) = 0 is u0 = 0.

Moreover, by Lemma 3, one finds N ′(0) ≡ 0, so that M′(0) = L and condition (b) is

a consequence of Lemma 5. �

Remark 5. Taking into account that the set O in Theorem 8 is dense in D−1,2
0 (Ω),

from Theorem 8(iii) one deduces the following interesting property of weak solutions.

Let λ 6= 0 and T ≥ 0 be arbitrarily fixed. Given f ∈ D−1,2
0 (Ω) and ε > 0, there is

g ∈ D−1,2
0 (Ω) with |f − g|−1,2 < ε such that the number of weak solutions given in

Theorem 1 corresponding to the body force g (and v∗ ≡ 0) is finite and odd.

The next result furnishes a complete generic characterization of the manifold

M(f ). Its proof, based on an infinite-dimensional version of the so called “parametrized

Sard theorem” [109, Theorem 4.L], is technically involved and lengthy. The interested

reader is referred to [49, Theorem 88].

Theorem 9 The following properties hold.

(i) There exists a dense, residual set Z ⊆ D−1,2
0 (Ω) such that, for any f ∈ Z the

solution manifold M(f ) is a 2-dimensional (not necessarily connected) manifold

of class C∞ ;

(ii) For any f ∈ Z there exists an open, dense set P = P(f ) ⊂ R
2
+ such that, for

each p ∈ P, equation (67) has a finite number of solutions, n = n(p,f) ;

(iii) The integer n = n(p,f ) is independent of p on every interval contained in P .

Open Problem 5 It is not known whether, in the physically significant case of

vanishing body force f and boundary velocity v∗, the number of corresponding

steady-state solutions is generically finite.
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9 Bifurcation

As pointed out in the introductory section, if the speed of the center of mass of the

body, v0, reaches a critical value, it is experimentally observed, already in absence

of rotation, that the characteristic features of the original steady-state flow of the

liquid may change dramatically. The outcome could be either the onset of an entirely

different steady-state flow, or even of a time-periodic regime. Objective of this section

is to provide necessary conditions and sufficient conditions for the occurrence of this

phenomenon. More precisely, Subsection 9.1 will be concerned with time-independent

problems, while Subsection 9.2 will deal with the time-periodic case. For the sake of

simplicity, it will be assumed throughout v∗ ≡ 0.

9.1 Steady Bifurcation

One is mainly interested in situations where bifurcation is generated by the “combined”

action of translation and rotation of the body (provided the latter is not zero). To this

end, it is convenient to use a different non-dimensionalization for the equations (8)–(7),

in order to introduce an appropriate bifurcation parameter. Precisely rescaling velocity

with v0 and length with v0/ω, equations (8)–(7) become

∆v + λ (∂1v + e1 × x · ∇v − e1 × v − v · ∇v) = ∇p+ f

divv = 0

}
in Ω

v = e1 + e1 × x at ∂Ω ; lim
|x|→∞

v(x) = 0 ,

(73)

where now λ := v2
0(e · e1)/(νω).

Remark 6. Of course, the above non-dimensionalization requires ω 6= 0. However, for

future reference it is important to emphasize that all main results presented in this

section continue to hold in exactly the same form also when ω = 0.

With the notation introduced in the previous section (see (67) and (68) with

p ≡ λ), the original equation (30) is equivalent to the following nonlinear equation

M (λ,u) := L (λ,u) + N (λ,u) + H (λ) = f in D−1,2
0 (Ω), u ∈ X(Ω) (74)

Definition 2. Let u0 ∈ X(Ω) be a solution to (74) with λ = λ0. The pair (λ0,u0)

is called a steady bifurcation point for (74), if there are two sequences {λk,u
(1)
k } and

{λk,u
(2)
k } with the following properties

(i) {λk,u
(i)
k }, i = 1, 2 solve (74) for all k ∈ N;

(ii) {λk,u
(i)
k } → (λ0,u0) in R ×X(Ω) as k → ∞, i = 1, 2;

(iii) u
(1)
k 6≡ u(2)

k , for all k ∈ N.

One of the main achievements of this section is the proof that, under certain

conditions that may be satisfied in problems of physical interest, bifurcation is reduced
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to the study of a suitable linear eigenvalue problem, formally analogous to that oc-

curring in the study of bifurcation for flow in a bounded domain; see Theorem 11 and

Remark 8.

A necessary condition in order for (λ0,u0) to be a bifurcation point, is obtained

as a corollary to the following result.

Lemma 10 Let u0 ∈ X(Ω) be a solution to (74) with λ = λ0 and fixed f ∈ D−1,2
0 (Ω).

If

N(M ′(λ0,u0)) = {0} , (75)

namely, the (linear) equation

L (λ0,w) + λ0[B(u0,w) + B(w,u0)] = 0 in D−1,2
0 (Ω) (76)

has only the solution w = 0 in X(Ω), then there exists a neighborhood U(λ0), such

that for each λ ∈ U(λ0) there is one and only one u(λ) solution to (74). Moreover, the

map λ ∈ U → u(λ) ∈ X(Ω) is analytic at λ = λ0.

(The prime means Fréchet differentiation with respect to u.)

Proof. Consider the map

F : (λ,u) ∈ U(λ0) ×X(Ω) 7→ M (λ,u) − f .

Also using the fact that N (λ, ·) is quadratic (see (31)–(32)), it easily follows that F is

analytic (polynomial, in fact) at each (λ,u). Moreover, by assumption, F (λ0,u0) = 0.

Thus, the claimed property will follow from the analytic version of the implicit function

theorem provided one shows that F ′(λ0,u0) is a bijection. Now, from (31)–(32),

F ′(λ0,u0) = M
′(λ0,u0) ≡ L (λ0, ·) + λ0 [B(u0, ·) + B(·,u0)] ,

so that by Lemma 5 and Lemma 6 we infer that F ′(λ0,u0) is Fredholm of index 0, and

the bijectivity property follows from the assumption (75). �

From this result the following one follows at once.

Corollary 1. Necessary condition for (λ0,u0) to be a bifurcation point is that

dimN(M ′(λ0,u0)) > 0 , (77)

namely, the (linear) equation

L (λ0,w) + λ0[B(u0,w) + B(w,u0)] = 0 in D−1,2
0 (Ω) (78)

has a non-zero solution w ∈ X(Ω).

Remark 7. One can show that (77) is equivalent to the requirement that the linea-

rization of (73) around (λ0,v0 ≡ u0 +U ) corresponding to homogeneous data, namely,

∆w + λ0 (∂1w + e1 × x · ∇w− e1 ×w − v0 · ∇w −w · ∇v0) = ∇p
divw = 0

}
in Ω

w = 0 at ∂Ω ; lim
|x|→∞

w(x) = 0 ,

(79)
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has a non-trivial solution (w, p) ∈ [D2,2(Ω) ∩ X(Ω)] × D1,2(Ω). In fact, saying that

(78) has a nonzero solution w ∈ X(Ω) means that there exists w ∈ X(Ω) − {0} such

that (see (25)–(30) with λ = T ))

−(∇w,∇ϕ) + λ0[〈∂1w + R(w),ϕ〉 + (w · ∇v0 + v0 · ∇w,ϕ)] = 0 , (80)

for all ϕ ∈ D1,2
0 (Ω). However, by the properties of v0 and w combined with the

Hölder inequality one shows G := (w · ∇v0 + v0 · ∇w) ∈ L4/3(Ω), which, in turn, by

classical results on the generalized Oseen equation [47, Theorem VIII.8.1] furnishes, in

particular, w ∈ D2,4/3(Ω). By embedding, the latter implies w ∈ D1,12/5(Ω)∩ L12(Ω),

so thatG ∈ L12/7(Ω) which, again by [47, Theorem VIII.8.1], deliversw ∈ D2,12/7(Ω)∩
D1,4(Ω) ∩ L∞(Ω). Thus, G ∈ L2(Ω) and the property follows by another application

of [47, Theorem VIII.8.1]. Notice that the asymptotic condition in (79) is achieved

uniformly pointwise.

Next objective is to provide sufficient conditions for (λ0,u0) to be a bifurcation

point. To this end, it will be assumed that, in the neighborhood of (λ0,u0) there exists a

sufficiently smooth solution curve, that is, there is a map λ ∈ U(λ0) 7→ u(λ) ∈ X(Ω) of

class C2 (say), with u(λ0) = u0 and satisfying (74) for the given f . Setting w := u−u
one thus gets that w satisfies the equation

F (λ,w) := L (λ,w) + λ[B(w,u(λ)) + B(u(λ),w)] + N (λ,w) = 0 . (81)

Clearly, (λ0,u0) is a bifurcation point for (74) if and only if (λ0, 0) is a bifurcation point

for (81). Since, as showed earlier on, F ′(λ0, 0) ≡ L (λ0, ·) + λ0[B(·,u0(λ)) + B(u0, ·)]
is Fredholm of index 0, a classical result [109, Theorem 8.A] ensures that (λ0, 0) is a

bifurcation point provided the following conditions hold:

(i) dimN (F ′(λ0, 0)) = 1 ;

(ii) [Fλw(λ0, 0)](w1) 6∈ R (F ′(λ0, 0)) , w1 ∈ N (F ′(λ0, 0)) ,

where the double subscript denotes differentiation with respect to the indicated vari-

able. Condition (i) specifies in which sense the requirement of Corollary 1 must be met.

In order to give a more explicit form to condition (ii), it is convenient to introduce the

Stokes operator:

∆̃ : u ∈ D1,2
0 (Ω) 7→ ∆̃u ∈ D−1,2

0 (Ω) , (82)

with

〈∆̃u,ϕ〉 = −(∇u,∇ϕ) , ϕ ∈ D1,2
0 (Ω) . (83)

As is well known, ∆̃ is a homeomorphism [47, Theorem V.2.1]. By a straightforward

computation one then shows that

[Fλw(λ0, 0)](w1) = − 1

λ0

∆̃w1 + λ0 [B(w1, u̇(λ0)) +B(u̇(λ0),w1)] ,

(with “ · ” denoting differentiation with respect to λ) and therefore condition (ii) is

equivalent to the request that the equation

L (λ0,w) + λ0[B(u0,w) + B(w,u0)]

= − 1

λ0
∆̃w1 + λ0 [B(w1, u̇(λ0)) +B(u̇(λ0),w1)] ,

(84)
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has no solution. All the above is summarized in the following.

Theorem 10 Suppose the solution set of the equation

L (λ0,w) + λ0 [B(u0,w) + B(w,u0)] = 0 (85)

is a one-dimensional subspace of X(Ω) and let w1 be a corresponding normalized

element. If, in addition, equation (84) has no solution w ∈ X(Ω), then (λ0,u0) is a

bifurcation point for (74).

The assumptions of the result just proven admits a noteworthy conceptual

interpretation in the case when u̇(λ0) = 0. This happens, in particular, if u(λ) is

constant in a neighborhood of λ0, a circumstance that may occur by a suitable non-

dimensionalization of the original equation [36, Section VI]. To show the above, consider

the operator

L : w ∈X(Ω) ⊂ D1,2
0 (Ω) 7→ L(w)

= −∆̃−1[∂1w + R(w) + B(v0,w) + B(w,v0)]∈D1,2
0 (Ω) ,

where, as before, v0 := u0 +U .

The following lemma shows the fundamental properties of L. The proof is quite

involved and, for it, the reader is referred to [49, Lemma 111].

Lemma 11 Assume u0 ∈ L3(Ω) ∩ L4
loc(Ω). Then, the operator L is (graph) closed.

Moreover, Sp(LC) ∩ (0,∞) consists, at most, of a finite or countable number of eigen-

values, each of which is isolated and of finite algebraic and geometric multiplicities,

that can only accumulate at 0.

(Of course, the assumption u0 ∈ L4
loc(Ω) is redundant if u0 ∈ X(Ω). Also u0 ∈ L3(Ω)

is assured by Lemma 9 if f suitably summable at large distances.)

Combining Corollary 1, Lemma 11 and Theorem 10, one can then show the

following.

Theorem 11 Assume u̇(λ0) = 0, with u0 ∈ L3(Ω) ∩ L4
loc(Ω). Then, a necessary con-

dition for (λ0,u0) to be a bifurcation point for (74) is that µ0 := 1/λ0 is an eigenvalue

for the operator LC. This condition is also sufficient if µ0 is simple.

Proof. With the help of (25)–(27), and (30) one sees that condition (77) is equivalent

to assuming that the following equation has a non-zero solution w1 ∈ X(Ω)

∆̃w1 + λ0[∂1w1 + R(w1) + B(v0,w1) + B(w1,v0)] = 0

Operating with ∆̃−1 on both sides of the latter, one concludes that µ0 must be an

eigenvalue of Lc, which provides the first statement. Performing the same procedure

on (85) it can be next shown that the first assumption in Theorem 10 is satisfied if and

only if there is a unique (normalized) w1 ∈ X(Ω) such that

L(w1) = µ0w1 ,

that is, µ0 is an eigenvalue of Lc of geometric multiplicity 1. Furthermore, operating

again with ∆̃−1 on both sides of (84) with u̇(λ0) = 0, one gets

µ0w− L(w) = −µ2
0w1
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which, by the second assumption in Theorem 10, should have no solution, which means

that the algebraic multiplicity of µ0 must be 1 as well, and the proof of the claimed

property is completed. �

Another interesting and immediate consequence of Lemma 11 and Theorem 11

is the following one.

Corollary 2. Let u0 be a solution branch to (74) independent of λ ∈ J , where J is a

bounded interval with J ⊂ (0,∞). Suppose, furher, that u0 satisfies the assumption of

the preceding theorem. Then, there is at most a finite number, m, of bifurcation points

to (74) (λk,u0), λk ∈ J , k = 1 , · · · , m .

Remark 8. It is significant to observe that the statements of Theorem 11 and Corollary

2 formally coincide with those of analogous theorems for steady bifurcation from steady

solution to the Navier-Stokes equation in a bounded domain; see, e.g., [6, Section 4.3C].

However, in the latter case L is a compact operator defined on the whole of D1,2
0 (Ω),

whereas in the present case, L is a densely defined unbounded operator.

Remark 9. Arguing as in Remark 7, one deduces that, under the assumption of Theorem

11, a sufficient condition for (λ0,u0) to be a bifurcation point is that the eigenvalue

problem (78) with (w, p) in the specified function class, has λ0 as a simple eigenvalue.

9.2 Time-Periodic Bifurcation

In spite of its great relevance and frequent occurrence in experimental fluid mechanics,

time-periodic bifurcation in a flow past an obstacle has represented a long-standing

and intriguing problem from a rigorous mathematical viewpoint. This situation should

be contrasted with flow in a bounded domain where, thanks to the pioneering and

fundamental contributions of Iudovich [68], Joseph and Sattinger [70], and Iooss [67],

complicated time-periodic bifurcation phenomena, like those occurring in the classical

Taylor-Couette experiment, could be framed in a rigorous mathematical setting.

In order to understand the reason for this uneven situation and also provide

a motivation for the approach presented here, it is appropriate to briefly describe

what constitutes a rigorous treatment of the phenomenon of time-periodic bifurcation.

Suppose, as will be in fact show later on, that the relevant time-dependent problem

can be formally written in the form

ut + L(u) = N(u, µ) , (86)

where L is a linear differential operator (with appropriate homogeneous boundary con-

ditions), and N is a nonlinear operator depending on the parameter µ ∈ R, such that

N(0, µ) = 0 for all admissible values of µ. Then, roughly speaking, time-periodic bi-

furcation for (86) amounts to show the existence a family of non-trivial time-periodic

solutions u = u(µ; t) of (unknown) period T = T (µ) (T -periodic solutions) in a neigh-

borhood of µ = 0, and such that u(µ; ·) → 0 as µ→ 0. Setting τ := 2π t/T ≡ ω t, (86)

becomes
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ω uτ + L(u) = N(u, µ) (87)

and the problem reduces to find a family of 2π-periodic solutions to (87) with the above

properties. If one now writes u = u+ (u − u) := v + w, one gets that (87) is formally

equivalent to the following two equations

L(v) = N(v + w, µ) := N1(v, w, µ) ,

ω wτ + L(w) = N(v + w, µ) −N(v + w, µ) := N2(v, w, µ) .
(88)

At this point, the crucial issue to realize is that while in the case of a bounded flow

both “steady-state” component, v, and “oscillatory” component, w, may be taken in

the same (Hilbert) function space [68; 70; 67], in the case of an exterior flow, v

belongs to a space with quite less “regularity” (in the sense of behavior at large spatial

distances) than w does; see also [53]. For this basic reason, as emphasized for the first

time only recently in [51; 52], in the case of an exterior flow it is not appropriate (or

even “natural”) to investigate the bifurcation problem for (87) in just one functional

setting, as done, for example, in [101]; it is instead much more spontaneous to study the

two equations in (88) in two different function classes. As a consequence, even though

formally being the same as differential operators, the operator L in (88)1 acts on and

ranges into spaces different than those the operator L in (88)2 does. With this in mind,

(88) becomes

L1(v) = N1(v, w, µ) ; ω wτ + L2(w) = N2(v, w, µ) .

The above ideas will be next applied to provide sufficient conditions for time-

periodic bifurcation in a viscous flow past a body. It will be assumed throughout T = 0,

leaving the case T 6= 0 as an open question. Set

L1 : v ∈ X(Ω) 7→ L (λ0,v) ∈ D−1,2
0 (Ω) (89)

with L (λ0,v) defined in (76). From Lemma 10 and Remark 6 it follows that under

the assumption

N (L1) = {0} (H1)

there exists a unique weak-solution analytic branch vs(λ) := u(λ) + U to (8)–(7) in

a neighborhood U(λ0), with vs(λ0) = u0 + U . Thus, writing v = v(x, t;λ) + vs(x;λ),

from (5) one finds that v formally satisfies the (nondimensional) problem

vt+λ[(v − e1) · ∇v + vs(λ) · ∇v + v · ∇vs(λ)]= ∆v −∇p

div v = 0

}
in Ω × R

v = 0 at ∂Ω × R , lim
|x|→∞

v(x, t) = 0 , t ∈ R .

(89)

The bifurcation problem consists then in finding sufficient conditions for the existence

of a non-trivial family of suitably defined time-periodic weak solutions to (89), v(t;λ),

λ ∈ U(λ0), of period T = T (λ) (unknown as well), such that v(t;λ) → 0 as λ → λ0.

Following the general approach mentioned before, one thus introduces the scaled

time τ := ω t, split v and as the sum of its time average, v, over the time interval [−π, π],

and its “purely periodic” component w := v − v, and set µ := λ − λ0. In this way,



37

problem (89) can be equivalently rewritten as the following coupled nonlinear elliptic-

parabolic problem

∆v + λ0( ∂1v − v0 · ∇v − v0 · ∇v) = ∇p +N 1(v,w, µ)

div v = 0

}
in Ω

v = 0 at ∂Ω , lim
|x|→∞

v(x) = 0

(90)

and

ωwτ −∆w− λ0 (∂1w− v0 · ∇w−w · ∇v0)

= ∇ϕ+N 2(v,w, µ)

divw = 0





in Ω2π

w = 0 at ∂Ω × (−π, π) , lim
|x|→∞

w(x, t) = 0 ,

(91)

where

N 1 := −µ [∂1v − vs(µ + λ0) · ∇v − v · ∇vs(µ + λ0)]

+λ0 [(vs(µ+ λ0) − v0) · ∇v + v · ∇(vs(µ + λ0) − v0)]

+(µ + λ0)
[
v · ∇v +w · ∇w

]
,

(92)

and

N 2 := µ [∂1w − vs(µ+ λ0) · ∇w−w · ∇vs(µ+ λ0)]

−λ0

[
(vs(µ+ λ0) − v0) · ∇w +w · ∇(vs(µ+ λ0) − v0)

]

+(µ + λ0)
[
w · ∇v + v · ∇w +w · ∇w−w · ∇w

]
,

(93)

with v0 ≡ vs(λ0).

The next step is to rewrite (90)–(93) in the proper functional setting and to

reformulate the bifurcation problem accordingly. To this end, one begins to introduce

the operator

L2 : w ∈ D(L2)⊂H(Ω) 7→ −P [∆w + λ0(∂1w − v0 · ∇w −w · ∇v0)]∈H(Ω) ,

D(L2) := W 2,2(Ω) ∩ D1,2
0 (Ω) .

(94)

The following result can be proved by the same arguments (slightly modified in the

detail) employed in [52, Proposition 4.2].

Lemma 12 Let u0 := v0 −U ∈ X(Ω). Then Sp(L2C)∩{i R−{0}} consists, at most,

of a finite or countable number of eigenvalues, each of which is isolated and of finite

(algebraic) multiplicity, that can only accumulate at 0.

Consider, next, the time-dependent operator

Q : w ∈ W
2

2π,0(Ω) 7→ ω0wt + L2(w) ∈ H2π,0(Ω) . (95)

Again, by a slight modification of the argument used in the proof of [52, Proposition

4.3] one can show the following.

Lemma 13 Let v0 be as in Lemma 12. Then, the operator Q is Fredholm of index 0,

for any ω0 > 0.
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Finally, one needs the functional properties of the quantitiesN i, i = 1, 2, defined

in (92)–(93), reported in the following lemma. The proof is, one more time, a slight

modification of that given in [52, Lemma 4.5, and the paragraph after it] and will be

omitted.

Lemma 14 There is a neighborhood V(0, 0, 0) ⊂ R×X(Ω)×W 2
2π,0(Ω) such that maps

N1 : (µ,v1,v2) ∈ V(0, 0, 0) 7→ PN 1(µ,v1,v2) ∈ D−1,2
0 (Ω)

N2 : (µ,v1,v2) ∈ V(0, 0, 0) 7→ PN 2(µ,v1,v2) ∈ H2π,0(Ω)

are analytic.

Also in view of Lemmas 12–14, one then deduces that (90)–(93) can be put in

the following abstract form

L1(v) = N1(µ, v,w) in D−1,2
0 (Ω) ; ωwτ + L2(w) = N2(µ, v,w) in H2π,0 .(96)

Notice that the spatial asymptotic conditions on v in (90)4, is interpreted in the sense

of Remark 2, while the one in (90)4 for w holds uniformly pointwise for a.a. t ∈ R; see

[52, Remark 3.2].

One is now in a position to give a precise definition of a time-periodic bifurcation

point.

Definition 3. The triple (µ = 0, v = 0,w = 0) is called time-periodic bifurcation point

for (96) if there is a sequence {(µk, ωk, vk,wk)} ⊂ R×R+ ×D−1,2
0 (Ω)×W 2

2π,0 with the

following properties

(i) {(µk, ωk, vk,wk)} solves (96) for all k ∈ N ;

(ii) {(µk, vk,wk)} → (0, 0, 0) as k → ∞ ;

(iii) wk 6≡ 0, for all k ∈ N .

Moreover, the bifurcation is called supercritical [resp. subcritical] if the above sequence

of solutions exists only for µk > 0 [resp. µk < 0].

The goal is to give sufficient conditions for the occurrence of time-periodic bi-

furcation in the sense specified above. This will be achieved by means of the general

result proved in [52, Theorem 4.1]. With this in mind, one has to show that the as-

sumptions of that theorem are indeed satisfied. In this regard, supported by Lemma

12 one supposes

ν0 := iω0 is an eigenvalue of multiplicity 1 of L2C ,

k ν0 , k ∈ N − {0, 1} is not an eigenvalue of L2C .
(H2)

Next, consider the operator

L2(µ) := L2 − µS ,

with

S : w ∈ Z2,2(Ω) 7→ P [∂1w−v0·∇w−w·∇v0−λ0 (v̇s(λ0)·∇w+w·∇v̇s(λ0))] ∈ H(Ω) ,

and where, as before, “ ·” means differentiation with respect to λ. By [110, Proposition

79.15 and Corollary 79.16] one knows that for µ in a neighborhood of 0 there is a smooth
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map µ 7→ ν(µ), with ν(µ) simple eigenvalue of L2C(µ) and such that ν0 = ν(0). The

following condition will be further assumed:

<[ν̇(0)] 6= 0 , (H3)

which basically means that the eigenvalue ν(µ) must cross the imaginary axis with

“non-zero speed” when λ→ λ0.

The general result proved in [52, Theorem 3.1] can be now applied to show the

following time-periodic bifurcation result.

Theorem 12 Suppose (H1)–(H3) hold. Then, the following properties are valid.

(a) Existence. There are analytic families

(v(ε),w(ε), ω(ε), µ(ε)) ∈ X(Ω) × W
2

2π,0(Ω)× R+ × R (97)

satisfying (96), for all ε in a neighborhood I(0) and such that

(v(ε),w(ε)− εv1, ω(ε), µ(ε)) → (0, 0, ω0, 0) as ε → 0 .

(a) Uniqueness. There is a neighborhood

U(0, 0, ω0, 0) ⊂ X(Ω)× W
2

2π,0(Ω)× R+ × R

such that every (nontrivial) 2π-periodic solution to (96), (z, s), lying in U must coin-

cide, up to a phase shift, with a member of the family (97).

(a) Parity. The functions ω(ε) and µ(ε) are even:

ω(ε) = ω(−ε) , µ(ε) = µ(−ε) , for all ε ∈ I(0) .

Consequently, the bifurcation due to these solutions is either subcritical or supercritical,

a two-sided bifurcation being excluded (unless µ ≡ 0).

Open Problem 6 Sufficient conditions for the occurrence of time-periodic bifur-

cation in the case when the body is also spinning (T 6= 0) are not known.

10 Stability and Long Time Behavior of Unsteady

Perturbations

In this section, v0 will denote the velocity field of a steady-state solution to (8). As

usual, λ is assumed to be positive. However, since the theories that will be described

in this section have often been equally developed for both cases λ = 0 and λ 6= 0, a

number of cited results also concern the case when λ = 0. The function v0 is supposed

to satisfy

v0 ∈ L3(Ω), ∂jv0 ∈ L3(Ω) ∩ L3/2(Ω) (for j = 1, 2, 3). (98)
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It follows from Lemma 9 that, if λ 6= 0, such a v0 exists for a large class of body forces

f and boundary data. An associated pressure field is denoted by p0.

One is interested in the behavior of unsteady perturbations, (v′, p′) to the so-

lution (v0, p0). Thus, writing v = v0 + v′, p = p0 + p′, it follows from (5) that the

functions v′, p′ satisfy the equations

−v′t +∆v′ + λ∂1v
′ + T (e1 × x · ∇v′ − e1 × v′)
= λv0 · ∇v′ + λv′ · ∇v0 + λv′ · ∇v′ + ∇p′

divv′ = 0





in Ω × (0,∞) (99)

and the conditions

v′ = 0 at ∂Ω × (0,∞) ; lim
|x|→∞

v′(x, t) = 0 , all t ∈ (0,∞). (100)

For simplicity, from now on the primes are omitted in the notation above. Thus, the

formal application of the Helmholtz-Weyl projection P to the first equation in (99), as

formulated in Lq(Ω) (1 < q <∞), yields the operator equation

dv

dt
= L v + N v (101)

in the space Hq(Ω). By suitably defining the domains of the operators L and N , it

can be easily seen that (101) is, in fact, equivalent to (99), (100). To this end, let

Av := P∆v,

B1v := P ∂1v

for v ∈ D(A) := W 2,q(Ω) ∩ D1,q
0 (Ω),

B2v := P (e1 × x · ∇v − e1 × v),

Aλ,T v := Av + λB1v + T B2v

for

v ∈ D(Aλ,T ) :=

{
W 2,q(Ω) ∩ D1,q

0 (Ω) if T = 0,

{v ∈W 2,q(Ω) ∩ D1,q
0 (Ω); e1 × x · ∇v ∈ Lq(Ω)} if T 6= 0.

Note that A ≡ A0,0 and Aλ,0 ≡ A+ λB1 are the classical Stokes and Oseen operators,

respectively. Furthermore, let

B3v := P (v0 · ∇v + v · ∇v0),

L v := Aλ,T v + λB3v,

N v := −λP(v · ∇v)
for v ∈ D(L ) := D(Aλ,T ).

Obviously, the study of the stability of the solution (v0, p0) is equivalent to that

of the zero solution of problem (99)–(100) or equation (101). The properties of the

linear operator L and, especially, those of its “leading part” Aλ,T play a fundamental

role. Thus, the next two subsections will be concerned with a detailed analysis of these

properties.
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10.1 Spectrum of Operator Aλ,T

The following notions and definitions from the spectral theory of linear operators will

be relevant later on.

Let X be a Banach space with norm ‖ . ‖, X∗ be its dual, and T be a closed

linear operator in X with a domain D(T ) dense in X. (This guarantees that the adjoint

operator T ∗ exists.)

– The symbols nul (T ) and def (T ) denote the nullity and the deficiency of T , respec-

tively. If R(T ) is closed then nul (T ) = def (T ∗) and def (T ) = nul (T ∗) (see e.g. Kato

[71, p. 234]).

– The approximate nullity of T , denoted by nul′(T ), is the maximum integer m

(m = ∞ being permitted) with the property that to each ε > 0 there exists an

m-dimensional linear manifold Mε in D(T ) such that ‖Tv‖ < ε for all v ∈ Mε,

‖v‖ = 1. The approximate deficiency of T is denoted by def ′(T ) and defined as

def ′(T ) := nul ′(T ∗). Note that nul (T ) ≤ nul ′(T ) and def (T ) ≤ def ′(T ), the equali-

ties holding if the range R(T ) is closed. On the other hand, if R(T ) is not closed then

nul ′(T ) = def ′(T ) = ∞. The identity nul′(T ) = ∞ is equivalent to the existence

of a non-compact sequence {un} on the unit sphere in X such that Tun → 0 for

n→ ∞ (see [71, p. 233]).

– T is called a Fredholm operator if both the numbers nul (T ) and def (T ) are finite.

This implies, in particular, that R(T ) is closed in X [110, Proposition 8.14(ii)].

Operator T is semi-Fredholm if the range R(T ) is closed in X and at least one of

the numbers nul (T ) and def (T ) is finite. Consequently, T is semi-Fredholm if and

only if at least one of the numbers nul′(T ) and def ′(T ) is finite.

– The resolvent set Res(T ) is the set of all ζ ∈ C such that R(T − ζI) = X and

the operator T − ζI has a bounded inverse in X. Consequently, nul (T − ζI) =

nul ′(T − ζI) = def (T − ζI) = def ′(T − ζI) = 0 for ζ ∈ Res(T ). Note that Res(T )

is an open subset of C.

– The point spectrum Spp(T ) is the set of all ζ ∈ C such that nul (T − ζI) > 0.

– The continuous spectrum Spc(T ) is the set of all ζ ∈ C such that nul (T − ζI) = 0,

R(T − ζI) is dense in X, but R(T − ζI) 6= X. (In this case, R(T − ζI) is not closed

in X, which implies that def (T − ζI) = def ′(T − ζI) = nul′(T − ζI) = ∞.)

– The residual spectrum Spr(T ) is the set of all ζ ∈ C such that nul (T − ζI) = 0

and the range R(T − ζI) is not dense in X. The sets Spp(T ), Spc(T ) and Spr(T )

are mutually disjoint and Spp(T ) ∪ Spc(T ) ∪ Spr(T ) = Sp(T ) = C r Res(T ) (the

spectrum of T ).

– The essential spectrum Spess(T ) is the set of all ζ ∈ C such that T − ζI is not

semi-Fredholm. Both Sp(T ) and Spess(T ) are closed in C and Spess(T ) ⊂ Sp(T ).

Obviously, Spc(T ) ⊂ Spess(T ). Any point on the boundary of Sp(T ) belongs to

Spess(T ) unless it is an isolated point of Sp(T ) (see [71, p. 244]).

From [72] (if T = 0) and [104] (if T 6= 0), it follows that the operator Aλ,T is

closed in Hq(Ω) (1 < q <∞), and all ζ ∈ C with a sufficiently large real part belong to
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Res(Aλ,T ). The effective shapes and types of spectra of the operator Aλ,T , for various

values of λ and T , are described in [20] (in H(Ω), the case λ = 0), [21] (in H(Ω),

the general case λ ∈ R), [24] (in Hq(Ω), λ = 0) and in [22] (in Hq(Ω), λ ∈ R). The

spectrum of Aλ,0, as an operator in H(Ω), was studied by K.I. Babenko [4]. Babenko’s

result says that Sp(Aλ,0) = Spc(Aλ,0) = Λλ,0, where

Λλ,0 = {ζ = α+ iβ ∈ C; α, β ∈ R, α ≤ −β2/λ2} (102)

for λ 6= 0. The set Λλ,0 represents a parabolic region in C, symmetric about the real

axis, which shrinks to the non-negative part of the real axis if λ → 0. In fact, Sp(A)

(≡ Sp(A0,0)) coincides with Spc(A), and coincides with the interval (−∞, 0] in R, as

mentioned e.g. by O.A. Ladyzhenskaya in [82].

The spectrum of Aλ,T for general T is studied in [22]. Notice that the case T 6= 0

is qualitatively different from the case T = 0, because the magnitude of the coefficient

of the “new” term T e1 × x · ∇v becomes unbounded as |x| → ∞. Consequently, the

operator T e1×x ·∇ cannot be treated as a lower order perturbation of Stokes or Oseen

operator. The main results in [22] read as follows.

Theorem 13. Let 1 < q < ∞, λ 6= 0 and Ω = R3. Then the spectrum of Aλ,T , as an

operator in Hq(R
3), satisfies the identities Sp(Aλ,T ) = Spc(Aλ,T ) = Spess(Aλ,T ) = Λλ,T ,

where

Λλ,T := {ζ = α+ iβ + ikT ∈ C; α, β ∈ R, k ∈ Z, α ≤ −β2/λ2}.
Note that Λλ,T is a union of a family of overlapping solid parabolas, whose axes

form an equidistant system of half-lines {ζ ∈ C; ζ = α+ kT i, α ≤ 0, k ∈ Z}. All the

parabolas lie in the half-plane Re ζ ≤ 0 and their vertices are on the imaginary axis.

Theorem 14. Let 1 < q < ∞, λ 6= 0 and Ω ⊂ R
3 be an exterior domain with the

boundary of class C1,1. Then the spectrum of Aλ,T lies in the left complex half plane

{ζ ∈ C; Re ζ ≤ 0} and consists of the essential spectrum Spess(Aλ,T ) = Λλ,T and

possibly a set Γ of isolated eigenvalues ζ ∈ C rΛλ,T with Re ζ < 0 and finite algebraic

multiplicity, which can cluster only at points of Spess(Aλ,T ). The set Γ of such isolated

eigenvalues is independent of q ∈ (1,∞).

Sketch of the proof of Theorem 13; see [22] for the details. The proof develops

along the following steps (a)–(f).

(a) Using the definition of the adjoint operator, it can be verified that the adjoint

operator A∗
λ,T to Aλ,T coincides with the operator A−λ,−T inHq′(Ω), where 1/q+1/q′ =

1.

(b) From [19, Theorem 1.1] one can deduce that there exist constants C4 > 0 and

C5 > 0 such that if u ∈ D(Aλ,T ) and f ∈ Hq(Ω) satisfy the equation Aλ,Tu = f then

‖u‖2,q + ‖(ω × x) · ∇u‖q ≤ C4 ‖f‖q + C5 ‖u‖q . (103)

(c) If ζ ∈ C rΛλ,T , then each solution of the resolvent equation (Aλ,T − ζI)u = f , for

f ∈ Hq(Ω), satisfies the estimate

‖u‖q ≤ C6 ‖f‖q, (104)
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where C6 = C6(ζ, q). This estimate is derived by means of the Fourier transform, and

a subtle and rather technical application of the Michlin-Lizorkin multiplier theorem.

Using inequalities (103) and (104), one can prove that R(Aλ,T − ζI) is closed and the

operator Aλ,T − ζI is injective. The same statement also holds on the adjoint operator

A∗
λ,T in Hq′(Ω). As A∗

λ,T − ζI is injective, the range R(Aλ,T − ζI) is the whole space

Hq(Ω). Consequently, ζ ∈ Res(Aλ,T ). This shows that C r Λλ,T ⊂ Res(Aλ,T ).

(d) We show that Spp(Aλ,T ) = ∅. Assume that ζ ∈ Λλ,T and u ∈ D(Aλ,T ) satisfies the

equation (Aλ,T − ζI)u = 0. Applying the Fourier transform F , this equation yields

T (e1 × ξ · ∇û) − (ζ − iλξ1 + |ξ|2)û− T e1 × v̂ = 0, (105)

where û = F(u) and ξ = (ξ1, ξ2, ξ3) denotes the Fourier variable. The case 1 < q ≤ 2

is simpler, because û is a function from Lq′(Ω): if ξ1, r and φ denote the cylindrical

coordinates in the space of Fourier variables, then one can calculate that e1 ×ξ ·∇û =

∂φû. Substituting this to (105), one obtains the equation

T ∂φû− (ζ − iλξ1 + |ξ|2)û− T e1 × v̂ = 0.

If O(φ) denotes the matrix of rotation about the ξ1–axis by angle φ and ŵ(ξ1, r, φ) :=

O(φ) û(ξ1, r, φ) then one arrives at the ordinary differential equation

T ∂φŵ− (ζ − iλξ1 + r2 + ξ2
1) ŵ = 0.

This equation can be solved explicitly. The solution satisfies: ŵ(ξ1, r, φ + 2π) =

ŵ(ξ1, r, φ) e2π(ζ−iλξ1+r2+ξ2
1). As ŵ is 2π–periodic in variable φ, and Re ζ + r2 + ξ2

1 =

Re ζ+ |ξ|2 6= 0 for a.a. ξ ∈ R3, ŵ is equal to zero a.e. in R3. It means that u is the zero

element of Hq(Ω), which implies that it cannot be an eigenfunction and ζ therefore

cannot be an eigenvalue. The case 2 < q <∞ is rather more complicated because û is

only a tempered distribution. Nevertheless, one can also arrive at the same conclusion,

i.e. that any ζ ∈ Λλ,T cannot be an eigenvalue of Aλ,T .

(e) The identity Spr(Aλ,T ) = ∅ can be proven by means of the duality argument:

ζ ∈ Spr(Aλ,T ) would imply that ζ ∈ Spp(A
∗
λ,T ). However, the same considerations as

in step (d), applied to the adjoint operator A∗
λ,T , show that Spp(A

∗
λ,T ) = ∅.

(f) The identities Sp(Aλ,T ) = Spc(Aλ,T ) = Spess(Aλ,T ) follow from the facts that

Spp(Aλ,T ) and Spr(Aλ,T ) are empty and Spc(Aλ,T ) ⊂ Spess(Aλ,T ). The inclusion

Sp(Aλ,T ) ⊂ Λλ,T follows from item c). The inclusion Λλ,T ⊂ Spess(Aλ,T ) is proven

in [22] so that ζ is assumed to be in Λ◦
λ,T (the interior of Λλ,T ), and a concrete se-

quence {un}, such that ‖(Aλ,T − ζI)un‖q → 0 for n → ∞, is constructed on the unit

sphere in Hq(Ω). The construction is quite technical, so the readers are referred to

[22] for the details. Thus, ζ ∈ Spess(Aλ,T ), which implies that Λ◦
λ,T ⊂ Spess(Aλ,T ). The

inclusion Λλ,T ⊂ Spess(Aλ,T ) now follows from the fact that Spess(Aλ,T ) is closed. �

Sketch of the proof of Theorem 14; see [22] for the details. The proof is a conse-

quence of the following steps (g)–(j).

(g) One can show the same inequality as (103), applying the cut-off function technique

and splitting the equationAλ,Tu = f into an equation for the unknown u1 in a bounded

domain Ωρ (where ρ > 0 is sufficiently large) and an equation for the unknown u2 in
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the whole space R3. Due to [19, Theorem 1.1], the function u2 satisfies (103), while

u1 satisfies (103) because λB1u and T B2u can be brought into the right-hand side

and then one can apply the estimates of solutions of the Stokes problem in a bounded

domain. The Lq–norms of λB1u and T B2u over Ωρ can be interpolated between ‖u‖q

and ‖u1‖2,q, and the norm ‖u1‖2,q can be absorbed by the left-hand side. Finally, the

sum of the estimates of u1 (over Ωρ) and u2 (over R3) leads to (103).

(h) The inclusionΛλ,T ⊂ Spess(Aλ,T ): assume that ζ ∈ Λ◦
λ,T . By analogy with f), one can

construct a sequence {un} on the unit sphere inHq(Ω), such that ‖(Aλ,T −ζI)un‖q → 0

for n → ∞. Since Spp(Aλ,T ) is not known to be empty, and it is necessary to show

that ζ ∈ Spess(Aλ,T ), it is important that the sequence {un} is non-compact in Hq(Ω).

The details can be found in [22], where the functions un are defined so that they

have compact supports Sn in Ω, and the intersection ∩∞
n=1Skn (where {Skn} is any

subsequence of {Sn}) is empty.

(i) The opposite inclusion Spess(Aλ,T ) ⊂ Λλ,T : if ζ ∈ Spess(Aλ,T ) then, by definition,

nul ′(Aλ,T − ζI) = ∞ or def ′(Aλ,T − ζI) = ∞. The latter means that nul′(A∗
λ,T − ζI) =

∞. Thus, that nul ′(Aλ,T − ζI) may be assumed to be infinity, otherwise one can deal

with the operator A∗
λ,T instead of Aλ,T . The identity nul′(Aλ,T − ζI) = ∞ enables

one to construct, by mathematical induction, a sequence {un} in D(Aλ,T ) satisfying

‖un‖q = 1, ‖(Aλ,T−ζI)un‖q → 0 as n→ ∞ and dist(un; Ln−1) = 1 for all n ∈ N, where

Ln−1 denotes the linear hull of the functions u1, . . . , un−1. Using a cut–off function

technique, the functions un can be modified so that they are all supported for |x| > ρ

(for sufficiently large ρ), and the modified functions (let us denote them ũn) are on the

unit sphere in Hq(Ω) and satisfy ‖(Aλ,T −ζI)ũn‖q → 0 for n→ ∞ as well. However, as

supp ũn ⊂ Ω, ũn can be considered to be a function from D((Aλ,T )R3), where (Aλ,T )R3

denotes the operator Aλ,T in Hq(R
3). This yields the equality nul ′((Aλ,T )R3 −ζI) = ∞,

which implies, due to item c), that ζ ∈ Λλ,T .

(j) The domain ζ ∈ C r Λλ,T consists of points in Res(Aλ,T ) and possibly also of

isolated eigenvalues of Aλ,T with finite algebraic multiplicities, which may possibly

cluster only at points of ∂Λλ,T . (See [71, pp. 243, 244].) Assume that ζ ∈ C r Λλ,T is

an eigenvalue of Aλ,T with an eigenfunction u. Applying again an appropriate cut–off

function technique, and treating the equation (Aλ,T −ζI)u = 0 separately in a bounded

domain Ωρ (for a sufficiently large ρ) and in the whole space R3, one can show that

u is in W 2,s(Ω) for any 1 < s < ∞. (This follows from estimates valid in a bounded

domain and the result from item c), implying that ζ in in the resolvent set of (Aλ,T )R3.)

Finally, multiplying the equation (Aλ,T − ζI)u = 0 by u and integrating in Ω, one can

show that Re ζ < 0. �

When q = 2, in [21] it is shown that if B is axially symmetric about the x1–

axis then Sp(Aλ,T ) = Λλ,T . It means that the set of eigenvalues of Aλ,T , lying outside

Λλ,T , is empty. The same statement for operator Aλ,T in Hq(Ω) for general q ∈ (1,∞)

follows from Theorem 14. The proof in [21] comes from the fact that an eigenfunction u,

corresponding to a hypothetic eigenvalue ζ, is 2π–periodic in the cylindrical variable,

which is the angle ϕ measured about the x1–axis. Then the proof uses the Fourier



45

expansion of u in ϕ and splitting of the equation (Aλ,T − ζI)u = 0 to individual

Fourier modes.

Open Problem 7 In the general case when body B is not axially symmetric, it is

not known whether the set of eigenvalues of Aλ,T in C r Λλ,T is empty.

Finally, note that Sp(A0,T ) can be formally obtained, by letting λ → 0 in Λλ,T .

Then Λλ,T shrinks to a system of infinitely many equidistant half-lines. The spectrum

of operator A0,T is studied in detail in [24].

10.2 A Semigroup, Generated by the Operator Aλ,T

10.2.1 The Case T = 0

It is well known that the Stokes operator A generates a bounded analytic semigroup,

eAt, in Hq(Ω) [57]. The fact that the Oseen operator Aλ,0 ≡ A + λB1 also generates

an analytic semigroup in Hq(Ω) was proved by T. Miyakawa [91]. The main tool is the

inequality

‖B1u‖q ≤ ε ‖Au‖q + C(ε) ‖u‖q (106)

for all u ∈ D(A) and ε > 0, which implies that B1 is relatively bounded with respect

to A with the relative bound equal to zero. Then the existence and analyticity of the

semigroup e(A+B1)t follows e.g. from [71, Theorem IX.2.4].

The so called “Lr–Lq estimates” of the semigroup eAλ,0t play an important role

in the analysis of stability of steady flow. They were first derived by T. Kobayashi and

Y. Shibata in [72], whose main result is given next.

Theorem 15. If 1 < r ≤ q <∞ then there exists C = C(λ, q, r) > 0 such that

‖eAλ,0ta‖q ≤ C t−
3

2 ( 1

r
− 1

q ) ‖a‖r (107)

for all a ∈ Hr(Ω) and t > 0. Moreover, if 1 < r ≤ q ≤ 3 then

|eAλ,0ta|1,q ≤ C t−
3

2 ( 1

r
− 1

q )−
1

2 ‖a‖r (108)

for all a ∈ Hr(Ω) and t > 0.

Sketch of the proof ; see [72] for the details. Following [72], the starting point is the

following representation formula of the semigroup

eAλ,0ta =
1

2πit

∫ ω+i∞

ω−i∞

eζt ∂

∂ζ
(Aλ,0 − ζI)−1adζ , ω > 0 .

In order to estimate (Aλ,0−ζI)−1a, the Oseen resolvent problem (Aλ,0−ζ)a = f is split

into the problem in the bounded domain Ωρ (for sufficiently large ρ), and in the whole

space R3. The estimates in Ωρ follow from the fact that the Oseen operator in Ωρ has a
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compact resolvent and the spectrum (which coincides with the point spectrum) is in the

left half-plane in C, with a positive distance from the imaginary axis. The estimates in

R3 are obtained by means of the Fourier transform and the Michlin–Lizorkin multiplier

theorem. The next step is the construction of a parametrix, which enables the authors

to combine the estimates inΩρ and in R3, and obtain the estimates of |(Aλ,0−ζI)−1a|2,r

and |ζ| ‖(Aλ,0 − ζI)−1a‖r in terms of C ‖a‖r in the exterior domain Ω. Then the limit

procedure for ω → 0+ is considered. However, due to subtle technical reasons, the

limit procedure works only in a norm over a bounded domain and one only gets the

inequality

‖∂m
t ∇2eAλ,0ta‖r; Ωρ ≤ C t−3/2 ‖a‖r (109)

for t ≥ 1n and a ∈ Hr(Ω) with the support in Ωρ, where C = C(m, r, λ, ρ). On the

other hand, using the formula

u(x, t) =
( 1

4πt

)3/2
∫

R3

e−|x−tλ−y|2/4ta(y) dy.

for solution of the unsteady Oseen equations

−ut +∆u+ λ∂1u = 0

divu = 0




 in R
3 × (0,∞) (110)

with the initial condition u(x, 0) = a(x) (for x ∈ R3), one can derive the estimate

‖∂j
t∇ku(t)‖q;R3 ≤ C t−

3

2 ( 1

r
− 1

q )−
k
2 ‖a‖r (111)

for all a ∈ Hr(R
3) and t ≥ 1. The constant C on the right-hand side depends only

on j, k, q, r and λ. Finally, combining appropriately (109) with (111), one can obtain

(107) and (108). �

10.2.2 The Case T 6= 0

The operator Aλ,T ≡ A+λB1 + T B2 is the Oseen operator with the effect of rotation.

T. Hishida [64] considered the case λ = 0 and proved that A0,T ≡ A+T B2 generates a

C0–semigroup eA0,T t in H(Ω). M. Geissert, H. Heck and M. Hieber [55] also considered

λ = 0 and proved that A0,T generates a C0–semigroup eA0,T t in Hq(Ω) for 1 < q <∞.

The case λ 6= 0 was studied by Y. Shibata in [104], whose main finding is given next.

Theorem 16. Let 1 < r ≤ q <∞. The operator Aλ,T generates a C0 semigroup eAλ,T t

in Hq(Ω). Moreover, it satisfies the same inequalities (107) and (108) as the semigroup

eAλ,0t.

Sketch of the proof ; see [104] for the details. One begins to study the linear Cauchy

problem, defined by the equations

−ut +∆u+ λ∂1u+ T (e1 × x · ∇u− e1 × u) = ∇p

divu = 0




 in R3 × (0,∞) (112)
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and the initial condition u(x, 0) = a(x). The solution u(x, t) is expressed by means of

the Fourier transform and the solution of the corresponding resolvent problem with the

resolvent parameter ζ (denoted by AR3,T ,λ(ζ)) is expressed by the combined Laplace-

Fourier transform. Then the estimates of ‖AR3,T ,λ(ζ)‖q;R3 and |AR3,T ,λ(ζ)|m,q;R3 in

terms of powers of |ζ| and ‖a‖q are derived. The solution AR3,T ,λ(ζ) is then split into

the part A1(ζ), which “neglects” the term T (e1×x ·∇u−e1×u) in (112), and A2(ζ),

which is a correction due to this term. While the estimates of A1(ζ) are shown in a

similar way and for the same values of ζ as in the proof of Theorem 15, the estimates of

A2(ζ) impose sharper restrictions on ζ and hold only for ζ ∈ C+ := {ζ ∈ C; Re ζ > 0}.
However, remarkably enough, in [104], subtle estimates of A2(γ + is) (for γ > 0 and

s ∈ R) are derived independent of γ (for 0 < γ < γ0), provided a has a support in

BR(0) for R > 0. The essential role in the expression of the solution of (112) is played

by the integral of A2(ζ) on the line {ζ = γ + is; s ∈ R}, parallel to the imaginary

axis. The estimates independent of γ enable one to pass to the limit for γ → 0. Then

the appropriate cut-off function procedure, and the limit process for R → ∞, lead to

an expression, that confirms that u( . , t) depends on the initial datum a through a

C0–semigroup.

One can immediately observe from the shape of the spectrum of the operator

Aλ,T (see Theorems 13 and 14) that Aλ,T is not a sectorial operator in Hq(Ω). Thus,

unlike the case T = 0, the semigroup generated by Aλ,T is only a C0–semigroup and

not an analytic semigroup.

The idea used to derive estimates analogous to (107) and (108) is similar to that

employed in the proof of Theorem 15. However, in contrast to the case T = 0 (when,

expressing the solution by the line integral on a line parallel to the imaginary axis, one

especially needs to control the behavior of the resolvent for the values of the resolvent

parameter ζ near 0), the case T 6= 0 requires the control of the resolvent “uniformly”

on the whole line. This is caused by the fact that as the line approaches the imaginary

axis in the considered limit procedure, it approaches the spectrum of operator Aλ,T not

only in the neighborhood of 0, but in the neighborhood of the infinitely many points

ik T , k ∈ Z. �

10.3 Existence and Uniqueness of Solutions of the Initial–Boundary

Value Problem

This subsection presents a brief survey of results on the existence and uniqueness of

weak and strong solutions to the initial–boundary value problem, consisting of equation

(5) and the initial condition

v(x, 0) = a(x) for x ∈ Ω. (113)

Referring to other chapters in this Handbook for a detailed analysis, here only those

results are recalled that are relevant to our study. The definition of the weak solution,
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in the unsteady case, is analogous to that provided for the steady-sate problem (8)–(7).

More precisely, v is called a weak solution to problem (5)–(113) if

(i) v ∈ L∞(0, T ;H(Ω)) ∩ L2(0, T ;D1,2(Ω)) , for all T > 0 ;

(ii) lim
t→0+

‖v(t)− a‖2 = 0 ;

(iii) v satisfies (5) in the sense of distributions.

10.3.1 The Case T = 0

In absence of rotation, existence results can be found in many works. They mostly

concern the Navier–Stokes equations, but their extension to the more general problem

(5), (113) with T = 0 is rather straightforward.

The first results on the global in time existence of weak solutions, v, assuming

the initial velocity a ∈ H(Ω), are due to J. Leray [84] (for Ω = R3) and E. Hopf [66] (for

arbitrary open set Ω ⊂ R3). A more recent and detailed presentation of these classical

results can be found, e.g., in the book [106] or in the survey paper [39]. In particular, one

shows the existence of a weak solution for any a ∈ H(Ω) and f ∈ L2(0, T ; D−1,2
0 (Ω))

(and v ≡ 0 at ∂Ω). However, the uniqueness of such solutions in the same class of

existence remains an open problem. The weak solution is known to be unique if, in

addition, it is in Lr(0, T ; Ls(Ω)), where 2 ≤ r ≤ ∞, 3 ≤ s ≤ ∞, 2/r + 3/s ≤ 1. More

precisely, if v1 and v2 are two weak solutions, with v1 in the class Lr(0, T ; Ls(Ω))

above, and v2 satisfying the so called energy inequality (see (118) with v0 ≡ 0 and

s = 0), then v1 = v2. As the solutions in the class Lr(0, T ; Ls(Ω)) satisfy the energy

inequality automatically, one can speak of “uniqueness in the class Lr(0, T ; Ls(Ω))”.

Following [106], a weak solution v in the class Lr(0, T ; Ls(Ω)) with r, and s

as above, is called a strong solution. In addition to be unique, strong solutions are

also known to be “smooth” (= regular), provided that the body force f is either a

potential vector field (and can be therefore absorbed by the pressure term) or “suf-

ficiently smooth”. (See e.g. [39] for more details.) In particular, if ∂Ω is of class C2

and f ∈ L2(0, T ; L2(Ω)) then the strong solution v belongs to C((ε, T );H(Ω)) ∩
L2(ε, T ; W 2,2(Ω)) for any ε ∈ (0, T ). (It depends on the regularity of the initial velocity

a whether ε = 0 can also be considered.) For initial velocity a and body force f in ap-

propriate function spaces and of “arbitrary size”, strong solutions are known to exist in

some time interval (0, T0), but it is not known whether one can take T0 = ∞, in general.

If, however, the size of the data is sufficiently restricted, then one can show T0 = ∞.

There exists a vast literature on the subject dealing with various types of domains

and different choices of functions spaces for a and f , starting from the pioneering and

fundamental papers of A. A. Kiselev and O. A. Ladyzhenskaya, G. Prodi, and H. Fujita

and T. Kato in the early 60’s, and continuing with J.G. Heywood (1980), T. Miyakawa

(1982), Y. Giga (1986), H. Amann (2000) and R. Farwig, H. Sohr and W. Varnhorn

(2009). Among these papers, especially [62] (by Heywood) [91] (by Miyakawa), and [1]

(by Amann) deal with the Navier-Stokes problems in exterior domains. An important
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result concerning the length of the time interval (0, T0) where a strong solution exists

without restriction on the “size” of the data, states that (e.g. [1] or [61]), that if f is

e.g. in L2 (0,∞; L2(Ω)) then either T0 = ∞, or else |v( . , t)|1,2 → ∞ for t→ T0
−.

10.3.2 The Case T 6= 0

The existence of a weak solution to the problem (5), (113) with T 6= 0 has been

proven by W. Borchers [7]. It also follows from a more general result proven in [96] on

the existence of weak solutions in domains with moving boundaries. Recall that the

weak solution is a function in the same class as for the case T = 0, i.e. belongs to

L∞(0, T ; H(Ω)) ∩ L2(0, T ; W 1,2
0 (Ω)).

Regarding the local in time existence of a strong solution to the problem (5),

(113) with T 6= 0, only a few results are available. Below the contributions of T. Hishida

[64], G. P. Galdi and A. L. Silvestre [42] and P. Cumsille and M. Tucsnak [11] are

explained. They all concern the case when the motion of body B in the fluid reduces

to the rotation and the translational velocity is zero. It means that the term λ∂1v in

the momentum equation (5)1 vanishes.

T. Hishida [64] assumes that the body force f is zero and the initial velocity

is in D(A1/4) and proves the existence of a solution in the class C([0, T0]; D(A1/4)) ∩
C((0, T0]; D(A)) for certain T0 > 0. Recall that A denotes the Stokes operator. Hishida’s

proof is based on a non-trivial generalization of the semigroup method, formerly used

by Fujita and Kato [32].

G. P. Galdi and A. L. Silvestre [42] also deal with the case of the zero body force

f . They assume that the initial velocity a is in W 2,2(Ω), satisfies diva = 0 and e1×x ·
∇a ∈ L2(Ω), and they obtain a solution in C([0, T0]; W

1,2(Ω)) ∩ C((0, T0); W
2,2(Ω))

for some T0 > 0. The proof is based on the construction of classical Faedo-Galerkin

approximations in ΩR, getting a solution in ΩR, and letting R→ ∞. The procedure is,

however, not standard because of the “troublesome” term T e1×x ·∇v whose influence

has to be controlled.

P. Cumsille and M. Tucsnak [11] consider the equations of motion of the vis-

cous incompressible fluid around body B in a frame in which the velocity of the fluid

vanishes in infinity and the body is rotating with a constant angular velocity about

one of the coordinate axes. Thus, the domain filled in by the fluid is time dependent

and it is denoted by Ω(t). The authors consider a body force f locally square inte-

grable from (0,∞) to W 1,∞(R3) and the no-slip boundary condition for the velocity on

∂Ω(t). The main theorem from [11] says that if the initial velocity a is in W 1,2
0 (Ω(0))

and it is divergence-free then there exists T0 > 0 and a unique strong solution

u ∈ L2 (0, T0; W
2,2(Ω(t)))∩C ([0, T0]; W

1,2(Ω(t))) such that ut ∈ L2 (0, T0; L
2(Ω(t))).

Moreover, either T0 can be extended up to infinity or the norm of u in W 1,2(Ω(t)) tends

to infinity for t → T0−. In order to obtain a problem in a fixed exterior domain, the

authors use a change of variables which coincides with the rotation in the neighborhood

of body B, but it equals the identity far from the body. Then they solve the problem in
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the fixed exterior domain Ω. Using the relations between the solutions of the equations

in the frame considered in [11] on one hand, and the body fixed frame on the other

hand, the result of Cumsille and Tucsnak from [11] can be reformulated in terms of

solution to the problem (5), (113) as follows: given a ∈ H(Ω) ∩W 1,2
0 (Ω), there exists

T0 > 0 and a unique solution v of the problem (5), (113) such that

v ∈ L2 (0, T0; W
2,2(Ω)) ∩ C ([0, T0]; W

1,2(Ω)) ,

vt − T (e1 × x · ∇v − e1 × v) ∈ L2 (0, T0; L
2(Ω)) .

}
(114)

Cumsille & Tucsnak’s result is applied in subsection 10.5. Since it is also used in the case

λ 6= 0, we note that following the proof in [11] and using the fact that the translation-

related term λ∂1v in the first equation in (5) can be considered to be a subordinate

perturbation of ∆v, the above formulated result can be extended to the case when

it also includes the translation of B in the direction parallel to the axis of rotation.

Consequently, the result also holds for the equations in (5) with the term λ∂1v and

the second inclusion in (114) can be modified:

vt − λ∂1v − T (e1 × x · ∇v − e1 × v) ∈ L2
(
(0, T0; L

2(Ω)
)
. (115)

10.4 Attractivity and Asymptotic Stability with Smallness

Assumptions on v0

Recall that v0 denotes (the velocity field of) a solution to problem (8) (i.e. a steady-

state solution to problem (5)), and that its associated “perturbation” v satisfies (99)

and (100). Since in studying long-time behavior the dependence of v on time is more

relevant than the one on spatial variables, in the following considerations, v(x, t) is

often abbreviated to v(t). Thus, for example, the initial condition (113) may be written

in the form

v(0) = a. (116)

10.4.1 The Case T = 0

A number of results concern the long-time behavior of the unsteady perturbations v

in the class of weak solutions. The first relevant contribution in this direction is due

to K. Masuda [90], who assumes that v0 is continuously differentiable, ∇v0 ∈ L3(Ω)

along with the smallness condition which, according to our notation, yields

sup
x∈Ω

λ |x| |v0(x)| < 1

2
. (117)

The perturbed unsteady solution is supposed to satisfy the momentum equation in (5)

with a perturbed body force. Thus, the corresponding perturbation v satisfies (99),

(100), with an additional right-hand side f ′ in (99), representing the perturbation to

the steady body force f . The Helmholtz-Weyl projected function Pf ′ is assumed to be

in C1 ([0,∞); H(Ω))∩L1 (0,∞; H(Ω)) and such that supt>0

∫ t+1

t
‖(d/ds)Pf ′(s)‖2

2 ds+
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∫ ∞

0
s1/2 ‖(d/ds)Pf ′(s)‖2 ds <∞. As for the class of perturbations, the author assumes

that v is a weak solution to the problem (99) (with a nonzero f ′ on its right-hand

side), (100), and (116), with initial data a ∈ H(Ω), and satisfies the so called “strong

energy inequality”, namely,

1
2
‖v(t)‖2

2 ≤ 1
2
‖v(s)‖2

2 −
∫ t

s

[
λ(v(τ ) · ∇v0,v(τ )) + |v(τ )|21,2 + (f ′(τ ),v(τ ))

]
dτ , (118)

for a.a. s > 0 (including s = 0) and all t ∈ [s, T ] , arbitrary T > 0 . Notice that the

latter is formally obtained by multiplying equation (99) by v and integrating over Ω×
(s, t), and relaxing the equality sign to the inequality one. Under the above conditions,

Masuda shows that there exists T∗ > 0 such that v(t) becomes regular for t > T∗, and

decays at the following rate

|v(t)|1,2 ≤ Ct−1/4 , ‖v(t)‖∞ ≤ Ct−1/8 , for all t > T∗. (119)

The proof uses (118) and the assumptions on the integrability of f ′ to deduce, first, that

v(t) is “small” for large t. Then, combining this with the estimates of A1/2v one shows

that v(t) is regular and tends to zero for t → ∞ in the norm | . |1,2. The rate of decay is

calculated from the energy-type inequality, satisfied by vt. The author also generalizes

these results to the case when the unperturbed solution v0 is time-dependent. It should

be noted that in [90] no assumption on the size of the initial perturbation a is used: it

can be arbitrarily large. However, nothing can be said about the behavior of v(t) for

t ∈ (0, T∗).

If v0 ≡ 0, the decay rates (119) are sharpened by J.G. Heywood in [62].

The above results have been further elaborated on by P. Maremonti in [88].

Maremonti studied the attractivity of steady as well as unsteady solutions v0 to problem

(5) in the same class of weak solutions considered by Masuda with f ′ ≡ 0. In particular,

for the case v0 steady, he shows the following decay rates

‖vt(t)‖2 ≤ C t−1 , |v(t)|1,2 ≤ C t−1/2 , ‖v(t)‖∞ ≤ C t−1/2 ,

thus improving and extending the analogous finding of [90] and [62]. Instead of con-

dition (117), the author assumes that the maximum of certain variational problem

involving v0 is not “too large”. The latter condition is certainly satisfied if v0 is suffi-

ciently regular and obeys (117).

The somehow more complicated question of asymptotic stability of v in the L2-

norm was first addressed by P. Maremonti in [89]. In particular, he shows that all v in

the class of weak solutions, with a ∈ H(Ω) and satisfying the strong energy inequality

(118) with f ′ ≡ 0, must decay to 0 in the L2-norm, provided that the magnitude of v0

is restricted in the same way as specified in [88] and discussed earlier on.

An important contribution to the studies of the asymptotic stability of the

steady solution v0 was also made by T. Miyakawa and H. Sohr in [92]. The authors

show that if the basic steady solution v0 of (5) is such that v0 ∈ L∞(Ω), ∇v0 ∈ L3(Ω)

and the smallness condition (117) is satisfied, and if, in addition, the perturbation f ′

to the body force f is in L2 ([0, T ); H(Ω)) for all T > 0 and in L1 ([0,∞); H(Ω)),

then the L2-norm of each weak solution v to problem (99), (100) satisfying the energy
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inequality (118) tends to 0 for t → ∞. In [92] it is also shown that the class of such

weak solutions is not empty, thus solving a problem left open in [89] and partially

solved in [35]. Further results concerning the L2–decay of the perturbation v(t) (as a

weak solution to (99), (100)) for t → ∞ are provided in the paper [8] by W. Borchers

and T. Miyakawa: the authors assume that the steady solution v0 of (5) is in L3(Ω),

∇v0 ∈ L3(Ω), the smallness condition (117) is satisfied and the perturbation f ′ to the

body force f is in L2
loc ([0,∞); H(Ω)) ∩ L1 (0,∞; H(Ω)) ∩ L1

(
0,∞; D−1,2

0 (Ω)
)
. They

show that then the L2-norm of each weak solution v to problem (99), (100) obeying

(118) tends to 0 for t → ∞. Moreover, if ‖eL ta‖2 = O(t−α) for some α > 0 then

‖v(t)‖2 = O
(
(ln t)ε−1/2

)
for any ε > 0. (Here, eL t denotes the semigroup generated by

operator L ; see Section 10.5.1.) The results of [8] are generalized by the same authors

to the case of n–space dimensions (n ≥ 3) in [9].

Even sharper rates of decay of the norms ‖v(t)‖r (2 ≤ r ≤ ∞) and ‖∇v(t)‖r

(2 ≤ r ≤ 3) were obtained by H. Kozono in [77], provided the perturbation f ′ to the

body force is in L1 (0,∞; L2(Ω)) ∩ C ((0,∞); L2(Ω)) and decays like t−1 for t → ∞.

Kozono does not use any condition of smallness of the basic flow v0 or its initial

perturbation a, but needs v0 in Serrin’s class Lr (0,∞; Ls(Ω)) (2/r+3/s = 1, 3 < s ≤
∞). This implies that v0 is in fact a strong solution and it is in a suitable sense small

for large t. Obviously, the only time-independent solution in the considered Serrin class

is v0 = 0.

There exists a series of results on stability of solution v0 in the class of strong

unsteady perturbations, which, unlike the cited papers [90], [62], [88], [8], [9] and [77],

provide an information on the size of the perturbations at all times t > 0, and not

just for “large” t. However, on the other hand, the initial value of the perturbation is

always required to be “small” as well as v0 is also supposed to be “sufficiently small”

in appropriate norms. The first results of this kind come from the early seventies of the

20th century and new results on this topic still appear.

The next paragraphs contain the sketch of the main steps to obtain a result of

the above type. Assume that v is a strong solution to problem (99), (100) in the time

interval (0, T0), for some T0 > 0. Multiplying the first equation in (99) (where v′ = v)

by v and integrating by parts over Ω, one obtains

1

2

d

dt
‖v‖2

2 + |v|21,2 = λ (v · ∇v0,v) ≤ λ |v0|1,3/2 ‖v‖2
6

≤ C2
7λ |v0|1,3/2 |v|21,2. (120)

(The norm ‖v‖6 has been estimated by Sobolev’s inequality: ‖v‖6 ≤ C7 |v|1,2, see

e.g. [47, p. 54].) Multiplying the first equation in (99) by Av ≡ P2∆v and integrating

over Ω, one obtains

1

2

d

dt
|v|21,2 + ‖Av‖2

2 = λ ((−∂1v + v0 · ∇v + v · ∇v0 + v · ∇v) , Av) dx

≤ 1

4
‖Av‖2

2 + 4λ2
(
‖∂1v‖2

2 + ‖v0 · ∇v‖2
0 + ‖v · ∇v0‖2

2 + ‖v · ∇v‖2
2

)
. (121)

The first term on the right-hand side can be absorbed by the left hand side. The other

terms on the right-hand side can be estimated by means of the inequalities
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|v|1,6 ≤ C ‖∇v‖1,2 = C
(
|v|21,2 + |v|22,2

)1/2 ≤ C
(
‖Av‖2

2 + |v|21,2

)1/2
,

where the first one follows from the continuous imbedding W 1,2(Ω) ↪→ L6(Ω) and the

second one follows e.g. from [47, pp. 322–323]. Thus, if Y[v] is defined by the formula

Y[v] := ‖Av‖2
2 + |v|21,2,

then

‖∂1v‖2
2 ≤ 2λ2 |v|21,2,

‖v0 · ∇v‖2
2 ≤ ‖v0‖2

6 |v|1,2 |v|1,6 ≤ C |v0|21,2 |v|1,2 Y[v]1/2

≤ ε ‖Av‖2
2 + C(ε)

(
|v0|21,2 + |v0|41,2

)
|v|21,2,

‖v · ∇v0‖2
2 ≤ |v0|21,3 ‖v‖2

6 ≤ C2
7 |v0|21,3 |v|21,2,

‖v · ∇v‖2
2 ≤ ‖v‖2

6 |v|21,3 ≤ C2
7 |v|31,2 |v|1,6 ≤ C |v|31,2 Y[v]1/2 ≤ C |v|21,2 Y[v].

Employing these inequalities into (121), and choosing e.g. ε = 1
4
, one gets

d

dt
|v|21,2 + ‖Av‖2

2 ≤ C8λ
2

(
1 + |v0|21,2 + |v0|41,2

)
|v|21,2 + C9λ

2 |v|21,2 Y[v]. (122)

Adding the inequalities (120) (multiplied by 2) and (122) (multiplied by α > 0), and

passing everything to the left-hand side, one obtains

d

dt

(
‖v‖2

2 + α |v|21,2

)

+ |v|21,2

[
2 − 2C2

7λ |v0|1,3/2 − C8λ
2α

(
1 + |v0|21,2 + |v0|41,2

)
− C9λ

2α |v|21,2

]

+ ‖Av‖2
2

[
α− C9λ

2α |v|21,2

]
≤ 0.

This implies that

d

dt

(
‖v‖2

2 + α |v|21,2

)
+ |v|21,2

[
2 − 2C2

7λ |v0|1,3/2 − C8λ
2α

(
1 + |v0|21,2 + |v0|41,2

)

−C9λ
2

(
‖v‖2

2 + α |v|21,2

)]
+ ‖Av‖2

2

[
α− C9λ

2
(
‖v‖2

2 + α |v|21,2

)]
≤ 0. (123)

This inequality shows that if

2C2
7λ |v0|1,3/2 + C8λ

2α
(
1 + |v0|21,2 + |v0|41,2

)
< 2 (124)

and ‖v‖2
2 + α |v|21,2 is initially so small that

C9λ
2

(
‖a‖2

2 + α |a|21,2

)

< min
{
2 − 2C2

7λ |v0|1,3/2 − C8λ
2α

(
1 + |v0|21,2 + |v0|41,2

)
; α

}
(125)

(recall that v(0) = a) then ‖v(t)‖2
2 + α |v(t)|21,2 is non-decreasing for t in some right

neighborhood of 0. This consideration can be simply extended, by the bootstrapping

argument, to the whole interval of existence of the strong solution v (let it be (0, T0))

so that one obtains: ‖v(t)‖2
2 + α |v(t)|21,2 < ‖a‖2

2 + α |a|21,2 for all t ∈ (0, T0). This

shows, among other things, that the norm ‖v(t)‖1,2 cannot blow up when t → T0−.

Consequently, T0 = ∞ and the inequality ‖v(t)‖2
2 + α |v(t)|21,2 < ‖a‖2

2 + α |a|21,2 holds

for all t ∈ (0,∞). Note that if

C2
7λ |v0|1,3/2 < 1 (126)
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then one can choose α > 0 so small that (124) holds. (α is further supposed to be

chosen in this way.)

Integrating inequality (123) with respect to t, one can also derive an information

on the integrability of Y[v(t)] and on the asymptotic decay of |v(t)|1,2. Thus, also

including the information on the uniqueness of strong solutions, and using the result of

[89], one obtains the following Lyapunov-type asymptotic stability of v0 in the W 1,2-

norm.

Theorem 17. Suppose the steady solution v0 to the problem (8) satisfies conditions

(98) and (126), and α > 0 is chosen so that (124) holds. Then, if a ∈ H(Ω)∩W 1,2
0 (Ω)

satisfies (125), problem (99), (100) with the initial condition v(0) = a has a unique

strong solution v on the time interval (0,∞). Furthermore, there exists C10 > 0 such

that this solution satisfies

‖v(t)‖2
2 + α |v(t)|21,2 + C10

∫ t

0

(
|v(s)|21,2 + α ‖Av(s)‖2

2

)
ds ≤ ‖a‖2

2 + α |a|21,2 (127)

for all t > 0 and

lim
t→∞

‖v(t)‖1,2 = 0. (128)

The noteworthy assumption in the above theorem is condition (126) of “sufficient

smallness” of the solution v0.

The ideas of proof described previously and similar energy-type considerations

have been applied to many other studies of stability or instability of steady-state so-

lutions to Navier–Stokes and related equations. Concerning flows in exterior domains,

the readers are referred e.g. to [60; 61; 33; 34; 36].

A different approach, based on a representation of a solution by means of semi-

groups generated by the operators Aλ,0 or L and on estimates of the semigroups, has

been employed by H. Kozono and T. Ogawa [75], H. Kozono and M. Yamazaki [76] and

Y. Shibata [102]. In particular, Kozono and Yamazaki [76] study the flow in an exterior

“smooth” domain Ω in Rn (n ≥ 3), under the assumption that the translational veloc-

ity of the moving body is zero, which in our notation means λ = 0 in the first equation

in (99). The steady-state solution v0 is supposed to belong to Ln,∞
σ (Ω) ∩ L∞(Ω) and

its gradient is supposed to be in Lr∗(Ω) for some r∗ ∈ (n,∞). (The Lorentz–type space

Lr,q
σ (Ω) for 1 < r < ∞ and 1 ≤ q ≤ ∞ is defined by means of the real interpola-

tion to be (Hr0
(Ω), Hr1

(Ω))θ,q, where 1 < r0 < r < r1 < ∞ and 1 < θ < 1 satisfy

1/r = (1−θ)/r0 +θ/r1, see [76]. It is shown in [9] that Lr,q
σ (Ω) coincides with the space

of all u ∈ Lr,q(Ω) such that divu = 0 in Ω in the sense of distributions and u ·n = 0

on ∂Ω in the sense of traces.) Equations (99) are treated in the equivalent form (101).

The operators L and N are defined in the introductory part of this section for n = 3,

but the definition in the general case n ∈ N, n ≥ 3 is analogous. In the considered case,

L has the concrete form L = A + λB3. The operator L generates a quasi-bounded

analytic semigroup in Hq(Ω) – this is shown in [76] by means of appropriate resolvent

estimates which imply that operator L is sectorial. The strong solution is identified

with the mild solution, which satisfies the integral equation
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v(t) = eL ta +

∫ ∞

0

eL (t−s)
N v(s) ds. (129)

The solution of this equation is constructed as a limit of a sequence of approximations,

which are defined by the equations v0 := e−L ta and

vj(t) := v0(t) +

∫ t

0

eL (t−s)
N vj−1(s) ds (j = 1, 2, 3, . . .).

The authors define Kj := sup0<t<∞ t
n
2 ( 1

n
− 1

r∗
) ‖vj(t)‖r∗ (for j = 0, 1, 2, . . .) and show

that the sequence {Kj}∞j=0 is bounded if K0 is sufficiently small. Here, the important

role play the estimates of
∫ t

0
eL (t−s)N vj(s) ds inLr∗(Ω), which are based on the duality

argument and Lp–Lr′∗ estimates of ∇eL ∗(t−s), where eL ∗(t−s) is the adjoint semigroup to

eL (t−s) in the dual space Hr′∗(Ω). Similar arguments enable one to derive the inequality

sup
0<t<∞

t
n
2 ( 1

n
− 1

r∗
) ‖vj+1(t) − vj(t)‖r∗ ≤ C(K0, n, r∗)

j (j = 0, 1, 2, . . .),

where C(K0, n, r∗) is less than one for K0 “small enough”. From this, the authors

deduce that there exists v such that t
n
2 ( 1

n
− 1

r∗
) v(t) ∈ BC((0,∞); Hr∗(Ω)) and

sup
0<t<∞

t
n
2 ( 1

n
− 1

r∗
) ‖vj(t)− v(t)‖r∗ −→ 0 as j → ∞.

The following theorem is the main result proved in [76]:

Theorem 18. Let v0 ∈ Ln,∞
σ (Ω)∩L∞(Ω), ∇v0 ∈ Lr∗(Ω) for some r∗ ∈ (n,∞). There

exists κ = κ(n, r∗) > 0 such that if ‖v0‖Ln,∞(Ω) ≤ κ and ‖a‖Ln,∞(Ω) ≤ κ then there

exists a strong solution v of the problem (101), (116) which, among other things, is in

BC ((0,∞); Ln,∞
σ (Ω)) ∩ C ((0,∞); D(A)) ∩ C1 ((0,∞); Hr∗(Ω)) and satisfies

‖v(t)‖r ≤ C t−
n
2 ( 1

n
− 1

r), n < r ≤ r∗

for all t > 0 with a constant C depending only on n, r and r∗.

In [76] it is also shown that the better is the information on the spatial decay

of the initial velocity a, the sharper is the asymptotic behavior of v(t) for t → ∞.

The case of a non-zero translational velocity of the body (i.e. λ 6= 0, in the

first equation in (99)) is dealt with by Y. Shibata [102]. Shibata’s approach strongly

uses the Lq–Lr estimates of the semigroup eAλ,0t generated by the Oseen operator Aλ,0,

provided by Theorem 15. Shibata considers the case f ∈ L∞(Ω) and assuming that λ

and

〈〈f 〉〉2δ := sup
x∈Ω

(1 + |x|)5/2 (1 + |x| + x1)
1/2+2δ |f (x)|

(for some 0 < δ < 1
4
) are “small”, he at first proves the existence of a steady solution

v0 to problem (8) (with T = 0), satisfying the condition v0(x) → 0 for |x| → ∞,

which is, among other things, “small” in the norm of W 2,q(Ω) (where 3 < q <∞). The

author considers general Dirichlet’s boundary condition v0 = g on ∂Ω, where g − e1

is supposed to be “small enough” in an appropriate norm. The next theorem follows

from [102, Theorem 1.4] if g = 0.
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Theorem 19. Let 3 < q < ∞ and β, δ be any numbers such that 0 < δ < 1
4

and

δ < β < 1− δ. Let f ∈ L∞(Ω) and a ∈ H3(Ω). Then there exists ε = ε(q, β, δ) ∈ (0, 1]

such that if 0 < λ < ε, 〈〈f 〉〉2δ ≤ λβ+δ and ‖a‖3 < ε then the problem (99), (100),

(116) has a unique solution v ∈ BC (0,∞; H3(Ω)) such that

[v]3,0,t + [v]q,(1−3/q)/2,t + [∇v]3,1/2,t ≤
√
ε,

where

[v]q,ρ,t := sup
0<s<t

sρ ‖v(s)‖q. (130)

Moreover, the inequalities

[v]r,(1−3/r)/2,t ≤ C(r)
(
ε+ ε1/2+β

)
,

‖v(t)‖∞ ≤ C(s)
(
ε+ ε1/2+β

) (
t−1/2 + t−(1−3/2s)

)

hold for any t > 0, where 3 < r <∞ and 3 < s < q.

The proof is based on solution of the integral equation

v(t) = eAλ,0ta +

∫ ∞

0

eAλ,0(t−s) [λB3v(s) + N v(s)] ds. (131)

The author derives a series of subtle estimates of the right-hand side, which finally

enable him to solve the equation (131) by means of the contraction mapping principle.

10.4.2 The Case T 6= 0

To the best of our knowledge, if the body is allowed to rotate there are no results analo-

gous to [90], [62], [88], [8], [9] and [77] regarding the behavior of unsteady perturbations

to the steady solution v0 in the class of weak solutions.

The asymptotic stability of a steady-state solution v0 when λ = 0 (body rotates

without translating in absence of external forces) was first proved by G. P. Galdi and

A. L. Silvestre in [42]. Their approach is based on the combined use of the classical

Galerkin method (suitably adapted to the situation at hand) and the spatial asymptotic

properties of v0 determined in [41]. More precisely, they show that there exists C11 > 0

such that if ‖a‖1,2 + |T | < C11, and if e1 × x · ∇a ∈ L2(Ω), then the initial–value

problem (99), (100), (116) has a strong solution v on the time interval (0,∞), which is

(together with its first order and second order spatial derivatives) in C ([0,∞); L2(Ω)),

and satisfies, among others, the following asymptotic property

lim
t→∞

|v(t)|1,2 = 0. (132)

The idea of the proof is as follows: due to the local in time existential theorems, the

strong solution v exists on a “short” time interval (0, T0). Considering at first the

equations in a bounded domain ΩR, multiplying equation (99) by v, applying the limit

procedure for R → ∞, and assuming that T is “sufficiently small”, the authors show

that ‖v(t)‖2 is bounded in (0, T0) and |v(t)|21,2 is integrable over (0, T0). Similarly,

multiplying the momentum equation by Av (respectively differentiating with respect
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to t and multiplying by vt) and using the smallness of T , one obtains an inequality

which shows that |v(t)|1,2 is uniformly bounded in (0, T0) and ‖Av(t)‖2
2 (respectively

‖∇vt(t)‖2
2) is integrable over (0, T0). Since ‖v(t)‖1,2 cannot blow up as t → T0−,

the interval (0, T0) can be extended to (0,∞). Since the integrals
∫ ∞

0
|v|21,2 dt and∫ ∞

0
|vt(t)|21,2 dt are finite, one can deduce that (132) holds.

In [104] and [103], Y. Shibata generalized his previous results from [102] (see

Section 10.4.1 on the existence of a “small” steady solution and its stability) to the

case when T 6= 0. Applying the same arguments as in [102] and using the fact that

the operator Aλ,T with the rotational effect generates a C0–semigroup eAλ,T t which

satisfies the same Lq–Lr estimates as the semigroup eAλ,0t (see Theorem 16), he proved

the following.

Theorem 20. Let 3 < q < ∞ and σ be a small positive number. Then, there exists

ε = ε(q, σ) > 0 such that if a ∈ H3(Ω) and

‖v0‖3−σ + ‖v0‖3+σ + |v0|1, 3
2
−σ + |v0|1, 3

2
+σ + ‖a‖3 ≤ ε ,

the problem (99), (100), (116) has a unique solution

v ∈ C ([0,∞); H3(Ω)) ∩ C0
(
(0,∞); Lq(Ω) ∩W 1,3

0 (Ω)
)
,

which satisfies (see (130))

[v]3,0,t + [v]q,(1−3/q)/2,t + [∇v]3,1/2,t ≤
√
ε for any t > 0.

Note that similar results have also been obtained by T. Hishida and Y. Shibata

[65] in the case when operator Aλ,T reduces to A0,T .

10.5 Spectral Stability and Related Results

The previous section presented, among other things, a number of results concerning

the attractivity/asymptotic stability under “smallness” assumptions on v0. Objective

of this section is to formulate analogous result, but with more general hypotheses that

involve the spectral properties of the relevant linearization around v0. Recall that the

perturbation v satisfies the operator equation (101), i.e.

dv

dt
= L v + N v.

Now, assume, temporarily, Ω bounded. It is then well known that Sp(L ) ≡ Spp(L )

[98]. In a series of fundamental papers going back to the pioneering works of G. Prodi

[98] and D.H. Sattinger [99], it is shown that the zero solution of the above equation

is stable, in fact, even exponentially stable, if

∃ δ > 0 : Re ζ ≤ −δ, ∀ζ ∈ Sp(L ) . (133)

It can be easily shown that if v0 is “small” enough (i.e., the operator B3 is a “small”

perturbation of Aλ,T ), then (133) holds, whereas the converse is not necessarily true.

However, if as in our case, Ω is an exterior domain, condition (133) cannot be satisfied.
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The reason is that the essential spectrum of L , located in the half-plane {ζ ∈ C; Re ζ ≤
0}, touches the imaginary axis at the point 0 if T = 0, or at infinitely many points ikT
(k ∈ Z) if T 6= 0; see (102) if T = 0, and Theorem 13 if T 6= 0. Now, as shown in [95]

if T = 0 and in [54] if T 6= 0, the operator B3 is relatively compact with respect to

Aλ,T . Consequently, the operator L ≡ Aλ,T + λB3 has the same essential spectrum as

Aλ,T and the spectra of L and Aλ,T differ at most by a countable number of isolated

eigenvalues which may possibly cluster only on the boundary of Spess(Aλ,T ), see [71,

pp. 243–244]. However, as shown in [15] (by P. Deuring and J. Neustupa) and [97] (by

J. Neustupa) the essential spectrum of L does not play a decisive role in the stability

issue. In fact, if condition (133) is replaced by a certain assumption on the eigenvalues

of L then one can show the stability of the zero solution of equation (101), regardless

of the properties of Spess(L ). The papers [15] and [97] both concern the case T = 0:

in the whole space [15], and in exterior domain [97]. Furthermore, they use results

from the previous research [95] by J. Neustupa, where the author also treats the case

T = 0 and formulates a sufficient condition for stability, under the assumption that the

semigroup eL t, applied to a finite family of certain functions, is L1– and L2–integrable

on (0,∞) in an appropriate norm defined only over a bounded sub–region of Ω. Similar

ideas have also been employed in papers [93] and [94] which concern a general parabolic

equation in a Hilbert space or a parabolic system in an exterior domain, and in paper

[54], which brings a generalization of the results from [95] to the case T 6= 0.

The next sections present in some details the results of [95], [15], [97] and [54].

To this end, the cases T = 0 [95; 15; 97] and T 6= 0 [54] are considered separately.

10.5.1 The Case T = 0

The paper [95] uses the following important facts and steps.

– As the operator Aλ,0 generates an analytic semigroup in H(Ω) and operator B3 is

relatively compact with respect to Aλ,0, the operator L ≡ Aλ,0 + λB3 = A+ λB1 +

λB3 generates an analytic semigroup in H(Ω) as well. (See [71, p. 498].) We denote

this semigroup by eL t.

– The operator B1 is skew–symmetric in H(Ω). Set

B3sv := P (v · (∇v0)s) ,

B3av := P (v0 · ∇v + v · (∇v0)a) .

The subscript s (respectively a) denotes the symmetric (respectively skew–symmetric

= anti–symmetric) part of operator B3 or of the tensor ∇v0.

– Let κ > 0 be fixed. The operator A + (1 + κ)λB3s is selfadjoint in H(Ω). The

spectrum of A + (1 + κ)λB3s consists of Spess (A + (1 + κ)λB3s) = (−∞, 0] and at

most a finite set of positive eigenvalues, each of whose has a finite multiplicity. Let

the positive eigenvalues be ζ1 ≤ ζ2 ≤ . . . ≤ ζN , each of them being counted as many

times as is its multiplicity. Let φ1, . . . ,φN be the associated eigenfunctions. They

can be chosen in a way that they constitute an orthonormal system in H(Ω).



59

– Denote by H(Ω)′ the linear hull of φ1, . . . ,φN and by P ′ the orthogonal projection

of H(Ω) onto H(Ω)′. Furthermore, denote by H(Ω)′′ the orthogonal complement to

H(Ω)′ in H(Ω) and by P ′′ the orthogonal projection of H(Ω) onto H(Ω)′′. Then

H(Ω) admits the orthogonal decomposition H(Ω) = H(Ω)′⊕H(Ω)′′ and the opera-

tor A+(1+κ)λB3s is reduced on each of the subspaces H(Ω)′ and H(Ω)′′. Moreover,

it is positive on H(Ω)′ and non–positive on H(Ω)′′.

– Since (Aφ+ (1 + κ)λB3sφ,φ) ≤ 0 for all φ ∈ H(Ω)′′ ∩D(A), operator L satisfies

(Lφ,φ) = ((A+ λB3s)φ,φ)2 =
κ

1 + κ
(Aφ,φ)

+
1

1 + κ
((A + λB3s + κλB3s)φ,φ) ≤ κ

1 + κ
(Aφ,φ) = −C12 |φ|21,2,

for all φ ∈ H(Ω)′′ ∩ D(A), where C12 = κ/(1 + κ). This inequality expresses the so

called “essential dissipativity” of L in space H(Ω)′′.

– All functions φ1, . . . , φN belong to D−1,2
0 (Ω) (the dual to D1,2

0 (Ω)).

The main result of the paper [95] is the following.

Theorem 21. Suppose that the steady solution v0 to the problem (8) satisfies condi-

tions (98), and let ρ∗ > 0 be so large that |v0|1,3/2 ,Ωρ∗ ≤ 1
8
. Moreover, assume

(A) there exists a function ϕ ∈ L1(0,∞) ∩ L2(0,∞) such that ‖eL tφi‖2; Ωρ∗
≤ ϕ(t)

for all i = 1, . . . , N and t > 0.

Then there are positive constants δ, C13, C14 such that if a ∈ H(Ω) ∩W 1,2
0 (Ω) and

‖a‖1,2 ≤ δ, the equation (101) with the initial condition v(0) = a has a unique solution

v on the time interval (0,∞). The solution satisfies

‖v(t)‖2
1,2 + C13

∫ t

0

(
|v(s)|21,2 + ‖Av(s)‖2

2

)
ds ≤ C14 ‖a‖2

1,2 (134)

(for all t > 0) and

lim
t→∞

|v(t)|1,2 = 0. (135)

The proof is based on splitting the equation (101) into an equation in H(Ω)′′,

where L is essentially dissipative, and a complementary equation, where one uses the

decay of the semigroup eL t following from assumption (A).

Theorem 21 tells us that the question of stability of the steady solution v0

reduces to the L1– and L2–integrability of a finite family of certain functions in the

interval (0,∞), i.e., condition (A). In the paper [15], the authors consider the case

Ω = R
3, and show that condition (A) is indeed satisfied under some assumptions on the

spectrum of L . The latter amounts to assume that all eigenvalues of L have negative

real parts, without any request on the essential spectrum of L . The important tool

used in [15] is the fundamental solution of the Oseen equation in R3 and the estimates

for the corresponding resolvent problem.

Sufficient conditions for the stability of the null solution to (99), in terms of

eigenvalues of L and when Ω 6≡ R3, have been recently formulated in the paper [97].

Here, the author shows at first that condition (A) in Theorem 21 can be replaced by

the following one
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(B) Given ξ > 0 there exist functions ϕ ∈ L1(0,∞) ∩ L2(0,∞) and ψ1, . . . ,ψN ∈
H(Ω) ∩ D−1,2

0 (Ω) such that

‖φj −ψj‖−1,2 ≤ ξ for j = 1, . . . , N, (136)
∣∣(eL tφi,ψj)

∣∣ ≤ ϕ(t) for t > 0 and i, j = 1, . . . , N. (137)

(Condition (B) reduces to the requirement that
∣∣(eL tφi,φj)

∣∣ ≤ ϕ(t) if one chooses

ψj = φj for j = 1, . . . , N .) In [97] it is further assumed that the steady solution v0 is

in Lr(Ω) for all r ∈ (2,∞] and ∂jv0 ∈ Ls(Ω), for j = 1, 2, 3 and for all s ∈ (4
3
,∞]. This

assumption is fulfilled if the acting body force f is in Lq(Ω) for all q ∈ (1, q0], where

q0 > 3; see Lemma 9. Moreover, if f has a compact support then v0 = E(x)·m+v′
0(x),

where m is a certain constant vector, E is the Oseen fundamental tensor and v′0(x) is

a perturbation which decays faster than E(x) for |x| → ∞; see Theorem 6. This form

of v0 is used in [97], where the main result states the following.

Theorem 22. Let the conditions

(C1) there exist δ > 0 and a0 > 0 such that all eigenvalues ζ of operator L satisfy

Re ζ < max{−δ; −a0 (Im ζ)2},
(C2) 0 is not an eigenvalue of the operator Lext

be fulfilled. Then the conclusions of Theorem 21 hold.

Here, Lext denotes the operator L with the domain extended to D2,2(Ω) ∩ D1,2
0 (Ω).

Condition (C1) implies that L has no eigenvalues with non–negative real parts.

Sketch of the proof of Theorem 22; see [97] for the details. The proof is based on

showing that [(C1)∧ (C2)] =⇒ (B). The function eL tφi is expressed by the formula

eL tφi = (2πi)−1

∫

Γ ε

eζt (ζI −L )−1φi dζ, (138)

where Γ ε is a curve in C r Sp(L ), which depends on a parameter ε > 0. Recall that

Sp(L ) consists of the essential spectrum in the half-plane {ζ ∈ C; Re ζ ≤ 0}, see (102),

and at most a countable number of isolated eigenvalues. Curve Γ ε has three parts Γ1,

Γ ε
2 and Γ3, where Γ1 and Γ3 coincide with the half-lines arg(ζ) = π ± α, respectively,

for some fixed α ∈ (0, π/2) and large |ζ|. Both the curves Γ1 and Γ3 lie in the half-plane

{ζ ∈ C; Re ζ < 0}. Since Spess(L ) touches the imaginary axis at point 0, the curve

Γ ε
2 := {λ ∈ C; λ = −as2 + ε(s2

0 − s2) + is for − s0 ≤ s ≤ s0} (where a > 0 and s0 > 0

are appropriate fixed positive numbers) extends into the half-plane {ζ ∈ C; Re ζ > 0}.
If ε → 0+ then Γ ε

2 approaches Γ 0
2 := {λ ∈ C; λ = −as2 + is for − s0 ≤ s ≤ s0}, and

consequently, Γ ε approaches Γ 0 = Γ1∪Γ 0
2 ∪Γ3. (Number a > 0 is chosen so that Sp(L )

lies on the left from Γ 0, with the exception of point 0.) In order to verify inequality

(137) in condition (B), one has to estimate
(
eL tφi,ψj

)
. Since one can prove that the

range of L ∗|D(Ω) (the adjoint operator to L reduced to D(Ω)) is dense in D−1,2
0 (Ω),

in order to satisfy (136) one can choose functions ψj in the form ψj := L ∗ψ′
j, where

ψ′
j ∈ D(Ω) (for j = 1, . . . , N). Then

(
eL tφi,ψj

)
=

1

2πi

∫

Γ ε

eζt
(
(ζI − L )−1φi,ψj

)
dζ
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=
1

2πi

∫

Γ ε

eζt
(
(ζI − L )−1φi, (L

∗ − ζI + ζI)ψ′
j

)
dζ

= − 1

2πi

∫

Γ ε

eζt
(
φi,ψ

′
j

)
dζ +

1

2πi

∫

Γ ε

eζt ζ
(
(ζI − L )−1φi, ψ

′
j

)
dζ. (139)

As the integrand in the first integral on the right-hand side depends on ζ only through

eζt, one can consider the limit for ε → 0+ and show that the integral equals the integral

on the curve Γ 0. A simple calculation yields that the integral on Γ 0, as a function of t,

is in L1(0,∞) ∩ L2(0,∞). (Here, it is important that Γ 0 ⊂ {ζ ∈ C; Re ζ ≤ 0} and Γ 0

touches the imaginary axis only at the point 0.) The treatment of the second integral

on the right-hand side of (139) is much more complicated. It is necessary to derive a

series of estimates of uζ := (L − ζI)−1φi, which satisfies the equation

(A+ λB1 + λB3 − ζI)uζ = φi. (140)

This equation can be treated as the perturbed Oseen resolvent equation with the re-

solvent parameter ζ. Especially the estimates for ζ 6∈ Sp(L ) in the neighborhood of 0

(hence also in the neighborhood of Spess(L )) are very subtle. They finally enable one

to pass to the limit for ε→ 0+ and show that the integral of eζt ζ
(
(ζI − L )−1φi,ψ

′
j

)

on curve Γ 0 is, as a function of t, in L1(0,∞)∩L2(0,∞). The factor ζ plays a decisive

role because it allows one to control the integrand for ζ on the critical part of curve

Γ 0, i.e. near ζ = 0.

Note that the assumption on the non–zero translational motion of body B in

the fluid (i.e. λ 6= 0) is important because it enables one to apply the theory of the

Oseen equation and to obtain appropriate estimates of function uζ . �

Remark 10. A result similar to Theorem 22 was stated by L.I. Sazonov [100]. There, the

main theorem on stability claims that the steady solution v0 is asymptotically stable in

the L3-norm if L , as an operator in H3(Ω), does not have eigenvalues in the half-plane

Re ζ > 0. However, the proofs of the fundamental estimates of the Oseen semigroup as

well as of the main theorem do not contain all the necessary details, which makes it

difficult to assess the validity of author’s arguments.

10.5.2 The Case T 6= 0

The results of [95] are generalized to the case T 6= 0 (i.e. B is allowed to spin at constant

rate) involving the rotational motion of body B, in the paper [36] by G. P. Galdi and

J. Neustupa. The steady solution v0 is assumed to satisfy the properties v0 ∈ L3(Ω),

∂jv0 ∈ L3(Ω) ∩ L3/2(Ω) (j = 1, 2, 3), and the estimate |∇v0(x)| ≤ C |x|−1 for x ∈ Ω.

The existence of such a solution is known for a large class of body forces f , provided

λ 6= 0; see Lemma 9 and Theorem 6. The main theorem on stability of the zero solution

of equation (101) is analogous to Theorem 21, that is why it is not repeated here.

The presence of the term T B2v in the operator L defined in equation (101)

causes a series of new problems that one has to face and overcome. For example, unlike
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the case T = 0, the time derivative of v need not be an element of H(Ω). However,

one can show that (dv/dt) − λB1v − T B2v ∈ H(Ω) and
∫

Ω

(dv
dt

− λB1v − T B2v
)
· v dx =

d

dt

1

2
‖v‖2

2 ,

∫

Ω

(dv
dt

− λB1v − T B2v
)
· Av dx = − d

dt

1

2
|v|21,2 .

These identities play an important role in the proof of the theorem on stability. Another

important step is to show that the functions ∇φi and ∆φi (i = 1, . . . , N) are square-

integrable with the weight |x|2 in Ω. This enables one to estimate the norm ‖B2v‖2 by

C |v|1,2, which is again a crucial property in the proof of the stability result. All details

can be found in [54].

Open Problem 8 The question whether –in analogy with the case T = 0 and

paper [95]– the stability of the zero solution of equation (101) can be determined by

the location of the eigenvalues of operator L is open.

The difficulties related to this problem are generated by the fact that now, being T 6= 0,

the operator L is no longer sectorial. Thus, even if all the eigenvalues have negative

real parts, one cannot express the eL tφi by a formula similar to (138), where the curve

Γ ε coincides with the half-lines arg(ζ) = π ± α (for some α ∈ (0, π/2) and large |ζ|)
and touches or intersects the half-plane C+ only in a small neighborhood of 0. On

the contrary, the curve Γ ε must lie at the right of infinitely many points ikT (k ∈ Z)

on the imaginary axis, and even if one formally passes to the limit ε → 0 in order to

obtain a curve Γ 0 in the half-plane {ζ ∈ C; Re ζ ≤ 0}, then Γ 0 must pass through the

points ikT (k ∈ Z). Consequently, the integral on the right-hand side of (138) cannot

be treated and estimated in the same way as in the case T = 0.

11 Conclusion

The article is an updated survey of important known qualitative properties of math-

ematical models of viscous incompressible flows past rigid and rotating bodies. The

models are based on the Navier-Stokes equations. Greatest attention is paid to steady

problems, as well as problems that are quasi-steady in the sense that the transformed

equations describing the motion of the fluid around a rotating body are steady in the

body-fixed frame. The presented results concern the existence, regularity and unique-

ness of solutions (see Sections 4–6). Section 7 deals with the spatial asymptotic prop-

erties of steady solutions, like the questions of presence of a wake behind the body

and the decay of velocity and vorticity in or outside the wake in dependence on the

distance from the body. Here, the case T 6= 0 (i.e. the case when the body rotates with
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a non–zero constant angular velocity) is much more difficult than the case T = 0 and

the relevant results are therefore of a relatively recent date. The structure of the set

of steady solutions for arbitrarily large given data is studied in Section 8 by means of

tools of nonlinear analysis, like the theory of proper Fredholm operators, corresponding

mod 2 degree, etc. One of the results asserts that, to a given nonzero translational ve-

locity and angular velocity, the solution set is generically finite and has an odd number

of elements. Section 9 analyzes sufficient and necessary conditions for bifurcations of

steady or time-periodic solutions from steady solutions. The corresponding theorems

provide a theoretical explanation of the well known phenomenon, i.e. that the prop-

erties and shape of a steady solution may considerably change if some characteristic

parameters of the flow field vary. The long time behavior of unsteady perturbations of a

given steady solution v0 are finally studied in Section 10. This section also brings some

necessary results on the existence and uniqueness of solutions. The core of the section

are 1) the results on the stability of v0 under the assumption that v0 is in some sense

“sufficiently small”, and 2) the results that do not need any condition of smallness of

v0, and instead of it they use either an assumption on a “sufficiently fast” time-decay

of a certain finite family of functions related to v0, or an assumption on the position

of eigenvalues of a certain associated linear operator. (Here, one has to overcome the

difficulties following from the presence of the essential spectrum, having a non-empty

intersection with the imaginary axis.)

The readers find a series of references to related papers or books inside each

section. The article also brings the formulation of altogether eight open problems that

concern the discussed topics and represent a challenge for future research.
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