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The Navier-Stokes equations

The Navier-Stokes equations

We consider the Navier–Stokes equations in a domain Ω ⊂ R3 with
smooth boundary ∂Ω, unit viscosity and zero external force

∂tu −∆u + (u · ∇)u +∇p = 0 in Ω× (0,T )
∇ · u = 0 in Ω× (0,T )
u = 0 on ∂Ω× (0,T )
u(·, 0) = u0 in Ω ,

(1)

u(t, x): velocity field

p(t, x): pressure field

Elisabetta Chiodaroli, Università di Pisa

On the energy equality for the Navier-Stokes equations 2/27



Classical Recent and new results Very weak solutions

The Navier-Stokes equations

Leray–Hopf solutions

In 3D Leray-Hopf weak solutions are characterized by

1)

∫ ∞
0

(u, ∂tφ)− (∇u,∇φ)− (u · ∇u, φ) dt = −(u0, φ(0))

for all φ ∈ C∞0 ([0,T [×Ω) with ∇ · φ = 0;
2) being in L∞(H) ∩ L2(V );
3) En. Inequality (EI)

1

2
‖u(T )‖2 +

∫ T

0
‖∇u(s)‖2 ds ≤ 1

2
‖u0‖2 ∀T ≥ 0 (EI)

4)
‖u(t)− u0‖ → 0 t → 0+
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The Navier-Stokes equations

Classical question

Which regularity of weak solutions for the validity of the energy
equality?

1

2
‖u(T )‖2 +

∫ T

0
‖∇u(s)‖2 ds =

1

2
‖u0‖2 (EE)

Elisabetta Chiodaroli, Università di Pisa
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The Navier-Stokes equations

Leray–Hopf solutions: remarks

(EI) comes by limit as ε→ 0 of approximate solutions

1

2
‖uε(T )‖2 +

∫ T

0
‖∇uε(s)‖2 ds =

1

2
‖u0‖2 (EE)

constructed e.g. by Galerkin or Leray method (regularize Eq.
by convolution uε · ∇)

(EE) for u would follow if we could use u itself as test
function, not allowed.
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The Navier-Stokes equations

Leray–Hopf solutions: scaling invariant regularity

Observe that by interpolation weak solution have scaling
invariant regularity

u ∈ Lp(0,T ; Lq)
2

p
+

3

q
=

3

2
, 2 ≤ q ≤ 6.
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The Navier-Stokes equations

Strong solutions

Strong solutions are

Leray-Hopf and also u ∈ L∞(V )

for them

we have local existence, uniqueness, regularity for t > 0, and (EE)

Large classes of weak solutions which are strong are those of
Leray-Prodi-Serrin-Ladyzheskaya.....

u ∈ Lp(0,T ; Lq)
2

p
+

3

q
= 1 q > 3 (q ≥ 3)
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The Navier-Stokes equations

(EE) and regularity of weak solutions

One main problem when dealing with weak sol. is that only
FORMALLY∫ T

0
(u·∇u, u) dt =

1

2

∫ T

0
(u,∇|u|2) dt = −1

2

∫ T

0
(∇·u, |u|2) dt = 0,

in fact

L4/3(V ′) 3 u·∇u u ∈ L2(V ) duality pairing not well-defined

The main point is to give meaning to space-time integral of
u · ∇u · u
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The Navier-Stokes equations

Which regularity for (EE)? (I)

Performing this calculation and proving eventually (EE) could be
done with less than critical scale invariant solution. This suggested
by a pioneering result of J.J. Lions (Padova 1960) and G. Prodi
(Ann. Mat. Pura Appl. 1959, Padova 1960):

u ∈ L4(L4) implies (EE)

in fact∣∣∣ ∫ T

0

(u·∇u, u) dt
∣∣∣ ≤ ∫ T

0

‖u‖2
L4‖∇u‖ dt ≤ (

∫ T

0

‖u‖4
L4dt)

1/2(

∫ T

0

‖∇u‖2 dt)1/2 <∞

hence
∫ T

0 (u · ∇u, u) dt = 0 and calculations leading to (EE) can
be justified by approximation by uh = ρh ∗t u (time-mollification
with even kernel ρ)∫ T

0

(∇u,∇uh)→
∫ T

0

‖∇u‖2,

∫ T

0

(u·∇u,∇uh)→ 0, (u(t), uh(t))→
‖u(t)‖2

2
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The Navier-Stokes equations

Remarks

In terms of scaling

1 <
2

4
+

3

4
=

5

4
<

3

2

hence Lions’ result is intermediate between

1 that is regularity and
3

2
that is existence

Long-standing conjecture of Prodi is
(EE) =⇒ uniqueness???

At present the only result coming from (EE) is the local energy
inequality for solutions constructed by the Fourier-Galerkin method
in the torus (Craig et al (2007))
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The Navier-Stokes equations

Which regularity for (EE)? (II)

With minor changes Shinbrot (SIMA 1974) extended to

u ∈ Lp(Lq)
2

p
+

2

q
= 1 q ≥ 4

in terms of scaling

1 <
2

p
+

3

q
=

2

p
+

2

q
+

1

q
= 1 +

1

q
≤ 5

4
<

3

2

Observe that There is a GAP and gap decreases as q → +∞
(limiting case is the same as Serrin)
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The Navier-Stokes equations

END OF CLASSICAL STORY
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Pressure regularity and (EE)

Recent results Kukavica (JDDE 2006) (weaker but dimensionally
equivalent to Lions’s result)

π ∈ L2(L2) implies (EE)

observe that π ∈ L2(L2) ∼ u ∈ L4(L4) since ∆π = ∇∇(uu).
The pressure in fact scales “as u squared” in terms of regularity
Berselli-Galdi (Proc AMS 2002) and Kang-Lee (IRMN notices
2006)

π ∈ Lp(Lq)
2

p
+

3

q
= 2 gives strong solution,

and Kucavica result is in the same spirit.
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“Relaxed” Prodi–Lions

Recent result: Maremonti (J. Math. Fluid Mech. 2018) proves a
relaxed Prodi–Serrin condition for regularity as well as a relaxed
Prodi–Lions condition for (EE). In particular

L4(ε,T ; L4) implies (EE)

for all ε > 0.

→ No compatibility condition on the initial data
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Point of view

We work with levels of regularity for ∇u and then we argue by
embedding.
In this respect there is a result by Cheskidov-Friedlander-Shvydkoy
(Adv. Math. Fluid Mech. 2010)

u ∈ L3(0,T ;D(A5/12)) ∼ L3(0,T ;H5/6) ⊂ L3(0,T ; L9/2)

considering a fractional derivative. In terms of scaling

1 <
2

3
+

2

9/2
=

10

9

weaker than Shinbrot.
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Main theorem (Berselli, C., 2018)

Our result is the following: if ∇u ∈ Lp(0,T ; Lq) for the following
ranges of p, q

(i) 3
2 < q < 9

5 and p = q
2q−3 or L

q
2q−3 (0,T ; Lq)

(ii) 9
5 ≤ q < 3 and p = 5q

5q−6 or L
5q

5q−6 (0,T ; Lq)

(iii) q ≥ 3 and p = 1 + 2
q or L1+ 2

q (0,T ; Lq),

then u satisfies (EE).

Elisabetta Chiodaroli, Università di Pisa
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Comments (I)

In terms of scaling invariant regularity for ∇u it is known that

∇u ∈ Lp(Lq)
2

p
+

3

q
= 2 gives strong solutions

Beirão da Veiga (Chinese Ann. Math. 1995, R3) and Berselli (DIE
2002, Ω).

For weak solutions ∇u is (x , t)-square-integrable and

2

2
+

3

2
=

5

2
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Comments (II)

In our ranges

(i) 2 < 2
p + 3

q = 4− 3
q <

5
2 , for any 3

2 < q < 9
5 ,

(ii) 2 < 2
p + 3

q = 2 + 3
5q <

5
2 , for any 9

5 ≤ q < 3,

(iii) 2 < 2
p + 3

q = 2q
q+2 + 3

q <
5
2 , for any 3 ≤ q < 6,
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Comments (III)

Observe that the “Best exponent” is q = 9/5, that is by
embedding q∗ = 9/2 which gives

u ∈ L3(0,T ;W 1,9/5) ⊂ L3(0,T ; L9/2)

at the same level of CFS (2010)
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Comments (IV)

Recalling that q∗ = 3q
3−q , we have

(i) 1 < 2
p + 2

q∗ = 2(5q−6)
3q for any 12

7 < q < 9
5 ,

(ii) 1 < 2
p + 2

q∗ = 2(10q−3)
15q for any 9

5 ≤ q < 3,

(iii) 1 < 2
p + 2

q∗ = 2(2q2+q+6)
3q(q+2) for any q ≥ 3,

thus showing that our range of exponents improves Shinbrot.

We recall that Shinbrot condition for the space integrability ≥ 4
corresponds to q ≥ 12

7 (i.e. q∗ ≥ 4) in our classification.
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On the energy equality for the Navier-Stokes equations 20/27



Classical Recent and new results Very weak solutions

Comments (V)

In the range 12
7 < q ≤ 9

5 (by embedding 3 ≤ p < q∗, q∗ > 4) our
result improves also the ranges obtained by Leslie-Shvydkoy (SIMA
2018). They prove (EE) for

u ∈ Lp(0,T ; Lr )
2

p
+

2

r
≤ 1 3 ≤ p ≤ r

However, Leslie and Shvydkoy studied also the case r < 3
corresponding in our case to q < 3/2 which is not covered by our
ranges.
Our results are not based on Paley-Littlewood decomposition and
come from a different approach.
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Onsager conjecture

The validity of (EE) has also connections with Onsager conjecture.
In terms of Hölder-Besov spaces we recall
Cheskidov-Constantin-Friedlander-Shvydkoy (Nonlinearity 2008).
This has been recently extended by Cheskidov-Luo (ArXiv 2018) to

u ∈ Lβw (0,T ;B
2
β

+ 2
p
−1

p,∞ ), 1 ≤ β < p ≤ ∞, 2

p
+

1

β
< 1 implies (EE)
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Onsager conjecture and our results

Our results show by embedding the condition

u ∈ L1+ 2
q (0,T ;C 0,1− 3

q ) which is in the case q = 9/2

u ∈ L
13
9 (0,T ;C 0,1/3),

which improves Cheskidov-Luo, since setting p =∞, and β = 3/2
one gets

u ∈ L
3
2
w (0,T ;B1/3

∞,∞)

and 1.5 = 3/2 > 13/9 = 1.4.
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Very weak solutions

All these results are valid for Leray-Hopf weak solutions, but a
recent result of Galdi (ArXiv 2017) proves that

u ∈ L4(0;T ; L4) u very weak, implies (EE)

Observe also that scaling invariant very weak solutions

u ∈ Lp(0,T ; Lq)
2

p
+

3

q
= 1 q > 3 and C (0,T ; L3)

are unique [Foias (Bull. Soc. Math. France 1961)] and regular
[Fabes-Jones-Riviere (ARMA 1972) and Berselli-Galdi (Nonlinear
TMA 2004) for q = 3]
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Ideas of proof

These results are based on the regularity of the adjoint (backward
parabolic Oseen) equation.

∂tw(t) + uε(T − t) · ∇w(t)−∆w(t) +∇ζ(t) = f (T − t)

with vanishing initial datum and f ∈ C∞0 .
The exponents p = q = 4 play a special role in the proof since one
can show that w is such that

wt ,∆w ,∇ζ ∈ L4/3(0,T ; L4/3)

and can be used as a test function to show, by duality if u0 ∈ L2,
that u is also a Leray-Hopf solution, and then to apply Lions.
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Extension of Galdi result (Berselli, C., 2018)

We extended this result to Shinbrot type exponents: if u is very
weak and

u ∈ Lp(Lq)
2

p
+

2

q
< 1 q ≥ 4

then (EE) holds true.

The proof is based on a bootstrap argument to arrive to the
requested space-time regularity needed to use the solution of
the dual problem as test function.

The loss < 1 is due to a certain space-time interpolation
result, which fails in the limiting case.
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Thank you for your
attention!
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